
YA7233-0/6E 

 

 

 

 

 

 
 

 Product: ４-axis control board (PCI-Express) 
 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



YA7233-0/6E 

1. Product Warranty 
 
• In the case of purchase from a supplier other than NPM 

If purchased from a supplier other than NPM, please contact the supplier for product warranty.  
 

• Warranty period 
The warranty period is one year from the date of the delivery. 

 
• Warranty scope 

If defects are found in the product during the warranty period under normal use following this document, 
NPM will repair the product without charge. However, the following cases are not covered by the warranty, 
and free repair does not apply to the product even during the warranty period. 

1) The products are modified or repaired by anyone other than NPM or authorized by NPM. 
2) The defect results from falling of the product after delivery or mishandling in transit. 
3) Wearing of components, natural deterioration or fatigue (motor axle bearing, gear, grease, cables, etc.)  
4) The defect results from any use other than original use. 
5) The product has been subjected to natural disaster or force majeure such as fire, earthquake, lightning 

strike, wind and flood, salt, and electrical surges. 
6) The defects or damage results from the cause other than the fault of NPM. 

 
Note 1) NPM will not provide on-site repair. If the product is defective, the product must be sent to a 

specified location for repair. 
Note 2) The warranty period of the repaired product is not extended beyond the warranty period of the 

product before the failure. It is the same as the warranty of the product before the repair. 
Note 3) This warranty covers the product itself. The detriments or damages induced by the product 

failure etc. will not be covered by the warranty. 
Note 4) A replacement may be provided instead of a repair at the discretion of NPM. 

 
• This document aims to describe the detail of the function of the product and it does not denote fitness 

for a particular purpose of the customer’s. 
The examples of application and circuit diagram in this manual are described for your reference.  
Please confirm the feature and the safety of device or equipment before use. 

 
• Please do not use this product for the following use in principle. If you use the product for the following 

uses, please contact our sales department. 
1) Any equipment that may require high reliability or safety, such as nuclear facility, electricity or gas 

supply system, transportation facilities, vehicle, various safety system, medical equipment, etc. 
2) Any equipment that may directly affect human survival or property 
3) Usage under conditions or circumstances that are not specified in the brochure, manual, etc. 

 
• When this product is used in any equipment where faults or malfunctions may directly affect human 

survival or property, please secure high reliability and security with redundancy design, etc. 



YA7233-0/6E 

2. Safety precautions 
 

Please read this document, manuals ad attached documents thoroughly before installation, using product, 
maintenance and inspection and use the product properly. 

 
• Precautions for delivery 

 

 
Caution 

 

● This product is accurate equipment. Do not drop or impact it.  

● Overloading could cause load collapse. 

 
• Precautions for installation 

 

 
Caution 

 

● Do not install the product in place with corrosive gas, oil, dust, vapor or 
metal powder etc.  

● Do not install the product at a site where this product is exposed to 
severe vibration. 

● Do not uRefer to xcessive force when installing the product. 

● Do not install or remove the product while it is being supplied with 
electric power. 

 

 

 

 

 

 

 

 

 
 
• Precautions for wiring 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 
Caution 

  
● Please do not touch the product during energyzation or for a while after 

turning off the power. There is a risk of burns due to the high 
temperature parts.  

 Caution 

 

● Please wire properly and securely. Failure to do so could cause motor 
runaway. That could cause injury. It could cause breakdown or injury. 

● Never wire to wrong terminals. It could cause breakdown.  

● Please fix cables and do not add a tensile stress to cables. It could 
cause breakdown or injury. 

● Please refer to end limit signals or emergency signals, etc. as needed 
for safety.  



YA7233-0/6E 

• Precautions for programming  
 

 

 

 

 

 

 

 
 
 
• Precautions for maintenance 

 

 

 

 

 

 

 

 

 

 

 

 
Caution 

 

● The codes described in this manual are the sample descriptions.  
When programming, please use a process to confirm the input vales 
and the return values as required. 

 
Caution 

 

● Do not install or remove the product or wire while it is being supplied 
with electric power. 

● Do not disassemble, convert or repair the product, which are not described  
in the manual.  



YA7233-0/6E 

- C1 - 

 
INDEX 

 

1. Introduction ··········································································· 1 

1.1 Features ....................................................................................................................................... 3 

1.2 Specification ................................................................................................................................ 4 

1.3 Software Supporting ................................................................................................................... 5 

1.3.1 Programming Library ............................................................................................................ 5 

1.3.2 PPCIe8443 Utility ................................................................................................................... 5 

2. Installation ············································································ 6 

2.1 Accessories.................................................................................................................................. 6 

2.2 PPCIe-8443 Dimensions ............................................................................................................. 7 

2.3 Hardware Installation .................................................................................................................. 8 

2.3.1 Hardware Configuration ....................................................................................................... 8 

2.3.2 PCIe Slot Selection ................................................................................................................ 8 

2.3.3 Installation Procedures ........................................................................................................ 8 

2.3.4 Trouble Shooting ................................................................................................................... 8 

2.3.5 Precautions (Sleep function) ............................................................................................... 8 

2.4 Software Driver Installation ........................................................................................................ 9 

2.4.1 Precautions for Installation to Windows 7. ........................................................................ 9 

2.4.2 Installation procedure for 32 bit Windows ......................................................................... 9 

2.4.3 Installation Procedure for 64 bit Windows ....................................................................... 11 

2.5 CN1 Pin Assignment: Emergency Input ................................................................................. 12 

2.6 CN2 Pin Assignment: Main Connector ................................................................................... 12 

2.7 P1 Pin Assignment: Manual Pulser Input ............................................................................... 14 

2.8 K1/K2 Pin Assignment: Simultaneous Start/Stop .................................................................. 14 

2.9 CN5 Pin Assignment: General Purpose Input/Output ........................................................... 15 

2.10 Jumper Setting for Pulse Output ............................................................................................. 17 

2.11 SW1 Board Index setting .......................................................................................................... 17 

2.12 SW2 Switch setting for the logic of EL ................................................................................... 17 

2.13 SW3 Switch Setting to Enable Emergency Input ................................................................... 18 

3. Signal Connections ······························································ 19 

3.1 Pulse Output Signals OUT and DIR ......................................................................................... 20 

3.2 Encoder Feedback Signals: EA, EB, and EZ .......................................................................... 21 

3.3 Origin Signal ORG (Home return) ............................................................................................ 23 

3.4 End-Limit Signals: PEL and MEL ............................................................................................. 24 

3.5 Ramping-Down & PCS .............................................................................................................. 25 

3.6 In-Position Signal: INP .............................................................................................................. 26 

3.7 Alarm Signal: ALM ..................................................................................................................... 27 



YA7233-0/6E 

- C2 - 

3.8 Deviation Counter Clear Signal: ERC ...................................................................................... 28 

3.9 General Purpose Output Signal SVON .................................................................................... 29 

3.10 General Purpose Input Signal: RDY ........................................................................................ 29 

3.11 Position Comparator Output: CMP .......................................................................................... 30 

3.12 Position Latch Input: LTC ......................................................................................................... 31 

3.13 Pulser Input Signals: PA and PB ............................................................................................. 32 

3.14 Simultaneous Start/Stop Signals: STA and STP .................................................................... 34 

3.15 Emergency Input EMG .............................................................................................................. 35 

3.16 Extended General Purpose Input / Output: EDI and EDO ..................................................... 35 

3.17 Power Supply Configuration .................................................................................................... 36 

4. Operation Theorem ······························································· 37 

4.1 Motion control mode ................................................................................................................. 37 

4.1.1 Output Pulse Mode .............................................................................................................. 38 

4.1.2 Velocity Mode Operation .................................................................................................... 40 

4.1.3 Positioning Operation for Single Axis .............................................................................. 41 

4.1.4 S-curve Profile Acceleration / Deceleration Operation ................................................... 43 

4.1.5 Linear Interpolation for Two to Four Axes ....................................................................... 45 

4.1.6 Circular Interpolation for Two Axes .................................................................................. 48 

4.1.7 Circular Interpolation with Acceleration / Deceleration Time ........................................ 49 

4.1.8 Helical Interpolation ............................................................................................................ 50 

4.1.9 The Relationship between Velocity and Acceleration Time ........................................... 51 

4.1.10 Continuous Operation ........................................................................................................ 53 

4.1.11 Home Return Operation (Origin Return) ........................................................................... 57 

4.1.12 Manual pulser operation ..................................................................................................... 63 

4.1.13 Timer Mode .......................................................................................................................... 63 

4.1.14 Pulser Interpolation............................................................................................................. 63 

4.2 The Motor Driver Interface ........................................................................................................ 64 

4.2.1 INP ......................................................................................................................................... 64 

4.2.2 ALM ....................................................................................................................................... 64 

4.2.3 ERC ....................................................................................................................................... 65 

4.2.4 SVON and RDY .................................................................................................................... 65 

4.3 Mechanical Input Interface and I/O Status .............................................................................. 65 

4.3.1 SD / PCS ............................................................................................................................... 66 

4.3.2 EL .......................................................................................................................................... 67 

4.3.3 ORG ...................................................................................................................................... 67 

4.3.4 EMG ...................................................................................................................................... 67 

4.4 Counters ..................................................................................................................................... 68 

4.4.1 Command Position Counter ............................................................................................... 68 

4.4.2 Feedback Position Counter ................................................................................................ 68 

4.4.3 Position Error Counter ....................................................................................................... 69 



YA7233-0/6E 

- C3 - 

4.4.4 General Purpose Counter ................................................................................................... 70 

4.4.5 Target Position Recorder ................................................................................................... 70 

4.5 Multiple PPCIe-8443 operation ................................................................................................. 71 

4.6 Change Position or Speed On The Fly (Override Function) ................................................. 72 

4.6.1 Change Speed On The Fly (Speed Override) ................................................................... 72 

4.6.2 Change Position On The Fly (Position Override) ............................................................ 76 

4.7 Comparator and Latch .............................................................................................................. 78 

4.7.1 Comparator of PPCIe-8443 ................................................................................................. 78 

4.7.2 Position Comparator ........................................................................................................... 79 

4.7.3 Position Latch ...................................................................................................................... 81 

4.8 Backlash Compensator and Vibration Suppression ............................................................. 81 

4.9 Software Limit Function ........................................................................................................... 82 

4.10 Interrupt Control ........................................................................................................................ 83 

4.11  Idling Control .............................................................................................................................. 85 

5. PPCIe-8443 Utility ································································· 86 

5.1 Execute PPCIe-8443 Utility ....................................................................................................... 86 

5.2 About PPCIe-8443 Utility .......................................................................................................... 86 

5.3 PPCIe8443 Utility Screen Introduction .................................................................................... 87 

5.3.1 Board ID Switch Enable / Disable Screen ......................................................................... 87 

5.3.2 Main Screen ......................................................................................................................... 87 

5.3.3 Interface I/O Configuration Screen .................................................................................... 88 

5.3.4 Pulse I/O and interrupt configuration screen ................................................................... 89 

5.3.5 Operation screen ................................................................................................................. 90 

6. Function Library ··································································· 94 

6.1 List of Functions ........................................................................................................................ 94 

6.2 C/C++ Programming Library .................................................................................................. 100 

6.3 Initialization .............................................................................................................................. 101 

6.4 Pulse Input/Output Configuration.......................................................................................... 103 

6.5 Velocity Mode Operation ........................................................................................................ 105 

6.6 Single Axis Position Operation .............................................................................................. 107 

6.7 Linear Interpolation Operation ............................................................................................... 111 

6.8 Circular Interpolation Operation ............................................................................................ 116 

6.9 Helical Interpolation Operation .............................................................................................. 121 

6.10 Home Return Mode (Origin Return) ....................................................................................... 124 

6.11 Manual Pulser Operation ........................................................................................................ 126 

6.12 Motion Status ........................................................................................................................... 129 

6.13 Motion Interface I/O ................................................................................................................. 130 

6.14 Motion I/O Monitoring ............................................................................................................. 132 

6.15 Interrupt Operation .................................................................................................................. 133 



YA7233-0/6E 

- C4 - 

6.16 Position Controls and Counters ............................................................................................ 137 

6.17 Position comparator and Latch ............................................................................................. 140 

6.18 Continuous Operation............................................................................................................. 145 

6.19 Multiple Axes Simultaneous Operation ................................................................................ 146 

6.20 Extended General-Purpose Input/Output ............................................................................. 149 

6.21 Error Code List ........................................................................................................................ 151 
 



YA7233-0/6E 

- 1 - 

1. Introduction  
 

PPCIe-8443 is an advanced 4 axes motion controller board with PCI Express interface. It can generate 
high frequency pulses (6.5 Mpps) to drive stepping motors and servo motors with pulse train input. It 
provides 2-axis circular, linear interpolation between 2 to 4 axes and continuous interpolation with 
velocity continuity. Also, changing positions and speeds on the fly are available in single axis operation. 
Multiple PPCIe-8443 up to 12 boards can be used in one system. Incremental encoder interface with all 
four axes provides the ability to correct positioning errors generated by inaccurate mechanical 
transmissions. And with the help of on-board FIFO, PPCIe-8443 can perform a  precise and extremely 
fast position comparison and a  trigger function without consuming CPU resource. In addition, 
mechanical sensor interface, servo motor interface and general-purpose I/O signals are provided for 
system integration. 
 
Figure 1.1 in the next page shows the function block diagram of PPCIe-8443. PPCIe-8443 uses one 
ASIC (PCL6046) to perform 4 axes motion control, and the ASIC is made by Nippon Pulse Motor. The 
motion control functions include linear and S-curve acceleration / deceleration, circular interpolation 
between two axes, linear interpolation between 2 ~ 4 axes, continuous motion, in positioning, and 13 
home return modes. Since these functions needing complex computations are done internally in the 
ASIC, the PC’s CPU is free to supervise and perform other tasks. 
 
PPCIe-8443 Utility, Microsoft Windows based software, is for supporting your application developments. 
It is very helpful for debugging a motion control system during the design phase of a project. The 
on-screen monitor shows all installed axis information and I/O signals status of PPCIe-8443. In addition 
to PPCIe-8443 Utility, Windows version function library are included us i ng  programmers using C++ and 
Visual Basic language. Several sample programs are provided to illustrate how to use the function library. 
 
Figure 1.2 is a flowchart to show a recommended process to develop an application using this manual. 
Please also refer to the relative chapters for the details of each process. 
 
 

 
 PCIe Bus

Servo Driver 
Interface

Mechanical 
InterfacePulse I/O Latch 

Input
Compare 
Output

PCI Bus 
Controller

FIFO FPGA
Pulser 
(P1)

STA/STP 
(K1/K2)

PCL 6046

Isolation

DC/DC

CN1
Ext +24V

Ext +5V +5V

CN2

OUT
DIR

EA,EB,EZ

-EL, +EL
SD

ORG

INP,ALM 
ERC 

SVON 
RDY

LTC3 
LTC4

CMP1 
CMP2

General 
Purposed 
IN/OUT
(CN5)

Emergency 
Input

EMG

CN1

 

 
Figure 1.1 Block Diagram of PPCIe-8443 

 
 



YA7233-0/6E 

- 2 - 

 
 
 

 

Hardware Installation
Jumper Setting

Wiring

Run PPCIe-8443 Utility
to Configure System

Run PPCIe-8443 Utility
to Verify Operation

Use Function Library
to develop Applications

System is OK?

END

Yes

No

Chapter 2 & 3

Chapter 5

Chapter 4 & 5

Chapter 4 & 6

 

 
 

Figure 1.2 Flowchart of building an application 
 



YA7233-0/6E 

- 3 - 

1.1 Features 
 

The following shows the main features of PPCIe-8443. 

• PCIe-Bus plug and play 

• 4 axes of step and direction pulse outputs for controlling stepping motors and servo motors 

• Maximum output frequency of 6.5 Mpps  

• Pulse output options: OUT / DIR, CW / CCW, or AB phase  

• Maximum encoder input frequency of 6.5 Mpps at 4 x AB phase 

• Maximum pulser input frequency of 6.5 Mpps at 4 x AB phase and CW / CCW 

• Programmable acceleration and deceleration time  

• Trapezoidal and S-curve velocity profiles for all modes  

• Circular interpolation by any 2 axes 

• Linear interpolation by any 2 to 4 axes 

• Continuous interpolation for contour following motion  

• Change position and speed on the fly 

• Change speed by comparator condition  

• 13 home return modes 

• Hardware backlash compensator and vibration suppression  

• Software end-limits for each axis without hardware switches. 

• 32-bit up / down counters for incremental encoder feedback. 

• Home switch, index signal (EZ), positive and negative end-limit switches interface provided for all 

axes. 

• Axes high speed position latch input 

• Axes position compare trigger output with 4K FIFO auto-loading 

• Maximum trigger output frequency of 25 KHz 

• All digital input and output signals are 2500 Vrms isolated (excluding SAT, STP, EDI, and EDO) 

• Programmable interrupt sources. 

• Simultaneous start / stop motion on multiple axes.  

• Manual pulser input interface. 

• Software supports maximum 12 boards of PPCIe-8443 (48 axes) in one system. 

• Compact, half size PCB. 

• PPCIe-8443 Utility, Microsoft Windows based application development software. 

• PPCIe-8443 Library and Utility for Windows7/8/10 (32 / 64 Bit) DLL, and sample programs (VC, VB, 

and C#) are included.  



YA7233-0/6E 

- 4 - 

1.2 Specification  
 

Applicable motors  Pulse input type Servo motors, Stepping motors  

Bus interface  PCI-Express 

Built-in LSI PCL6046 (Nippon Pulse Motor) 

Perfor- 
mance 

Number of controllable axes 4 

Max pulse output frequency  6.5 Mpps (Constant speed operation, Linear/S-curve 
acceleration/deceleration operation) 

Reference clock 19.6608 MHz 

Positioning pulse setting 
range 

−2,147,483,648 ~ +2,147,483,647 (32 bit) 

Pulse rate setting range 
(pulse ratio Multiplier) 

0.1 pps ~ 6,553.5 pps (Multiplier = 0.1 )  
1 pps ~ 65,535 pps (Multiplier = 1 ) 
100 pps ~ 6,553,500 pps (Multiplier = 100) 

Motion 
control 

I/O Signals  Command pulse output: OUT and DIR (each axis) 
Incremental encoder signals input: EA, EB (each axis) 
Encoder Z-phase input : EZ (each axis) 
Mechanical input: + EL, − EL, SD / PCS, ORG (each axis) 
Servo driver I/F : INP, ALM, ERC (each axis) 
Position latch input: LTC (Axis 2, Axis 3)  
Comparator output: CMP (Axis 0, Axis 1)  
General-purpose output: SVON (each axis) 
General-purpose input: : RDY (each axis) 
Pulser signal input: PA, PB (All axis in common, motion 
axis selected by software)  
Simultaneous Start / Stop signals I/O : STA, STP 
Emergency input: EMG 
Photo coupler insulation, insulation voltage:2500 Vrms 
(excluding STA, STP, EDI, and EDO) 

Extended general-purpose 
input / output 

Input 16 points, Output 16 points (EDI, EDO)  

General 
specifi- 
cation 

Axis control connector SCSI-type 100-pin connector  

Operating Temperature 0 °C ~ 50 °C   

Storage Temperature −20 °C ~ 80 °C 

Humidity 5% ~ 85% non-condensing 

Environment/Standard RoHS directive (2011/65/EU)  
CE marking   (EN 55022: 2010 /AC: 2011 

 EN 61000-3-2: 2014 
EN 61000-3-3: 2013 
EN 55024: 2010) 

Power consumption Bus power supply (input) : + 12 V DC ± 5%，250 mA Max 
External power supply(input) : + 24 V DC ± 5%, 500 mA 
Max 
External power supply(output) : + 5 V DC ± 5%, 500 mA 
Max 

Dimensions  185 mm (L) X 98.4 mm (H) 



YA7233-0/6E 

- 5 - 

1.3 Software Supporting 
 
1.3.1 Programming Library  
 
NPM provides Windows7/8/10 (32 / 64 bit) DLL for PPCIe-8443. 
Please download the board setup program from our website and install it on the PC. It will be installed under 
the Program Files folder.  
 
1.3.2 PPCIe8443 Utility 
 
Windows-based utility softwares are available for customers to set up boards, motors and systems. It can 
help users to debug their hardwares and softwares.  
Parameter settings such as I/O logic and signal specification set up using this software can also be used in 
customers’ programs.   
This software is installed by board setup program.  
 
Refer to Chapter 5 for details. 
 
 
 



YA7233-0/6E 

- 6 - 

2. Installation  
 
This chapter describes how to install PPCIe-8443. Please follow the steps below to install it correctly:  
 
- Check the accessories (Section 2.1) 
- Check the PC board (Section 2.2) 
- Install the hardware (Section 2.3) 
- Install the software driver (Section 2.4) 
- Understand the I/O signal connectors (Chapter 3) and the operation methods (Chapter 4) 
- Confirm the connectors’ pin assignments (section 2.5 to 2.13) and wire them.  

 
2.1 Accessories  
 

In addition to PPCIe-8443 Motion Control board, the package includes the following item: 
 
Emergency input cable (for CN1)  

 
If the item is missing or is damaged, contact the supplier of the product. Please keep the accessories and 
the carton box in the case you ship or store the product in the future. 
 

 

 

 



YA7233-0/6E 

- 7 - 

2.2 PPCIe-8443 Dimensions 
 

 
Figure 2.1 PCB Layout of PPCIe-8443 

 
 

CN1: Emergency Input Connector 
CN2: Input / Output Signal Connector  
CN5: Extended General-Purpose Input/ Output Connector 
P1: Manual Pulser Signal Connector 
K1/K2: Simultaneous Start / Stop Connector 
SW1: Board ID setting Switch 
SW2: End Limit Logic Selection Switch 
SW3: Emergency Input Enable Selection Switch 
J1 ~ J8: Pulse Output Type Selection Jumper 

 
 

 

 

 

 

 

 

 

 

 

EGND 



YA7233-0/6E 

- 8 - 

2.3 Hardware Installation 
 
2.3.1 Hardware Configuration 
 
PPCIe-8443 is a plug and play PCIe controller board. The memory usage (I/O port locations) of the PCIe 
board is assigned by system BIOS. The address assignment is done board-by-board basis in the system. 
 
2.3.2 PCIe Slot Selection  
 
PPCIe-8443 board can be used in any PCIe slot. 
 
2.3.3 Installation Procedures 
 
1. Read through this manual, and setup jumpers according to your application. 
2. After turning off the PC, then unplug the power cable which is connected to the PC. 
3. Remove the computer cover.  
4. Select a PCIe expansion slot to insert the board. 
5. Before handling PPCIe-8443, discharge any static buildup on your body by touching the metal case of 

the computer. Hold the edges and do not touch the components on the board.  
6. Insert the board into the PCIe slot you selected. 
7. Secure the board in place at the rear panel of the system with the screws removed from the slot. 

 
2.3.4 Trouble Shooting 
 
If the system does not start up or causes an unstable operation although you inserted the board in the 
correct place, please check the system BIOS manual. It may be caused by an interrupt conflict.  
 
2.3.5 Precautions (Sleep function) 
 
This board and software do not support the sleep function of OS. 
Please use them with turning sleep function OFF. 
 
 



YA7233-0/6E 

- 9 - 

2.4 Software Driver Installation 
 
2.4.1 Precautions for Installation to Windows 7. 
 
When the OS of the PC is Windows 7, it is necessary to conduct Windows Update (support information: KB 
3033929) in terms of SHA-2 compatibility:  
 
Japanese version  
http://www.microsoft.com/ja-jp/download/details.aspx?id=46078 
English version 
https://www.microsoft.com/en-US/download/details.aspx?id=46078 
 
2.4.2 Installation procedure for 32 bit Windows  
  

1) Execute the setup.exe (32 bit) with “Run as administrator” 
2) After finishing the set-up, open “Device Manager”, and find “Multimedia Video Controller” under 

“Other devices”. 
 

 
 

3) Select “Update Driver Software” from the Right-Click Menu.  
 

 
 
 

http://www.microsoft.com/ja-jp/download/details.aspx?id=46078
https://www.microsoft.com/en-US/download/details.aspx?id=46078


YA7233-0/6E 

- 10 - 

4) Click “Browse my computer for driver software”.  
 

 
 

 

 
5) Click “Browse” button and enter the following driver folder name: 
  “C:¥Program Files¥NPM¥PPCIe-8443¥Driver” 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



YA7233-0/6E 

- 11 - 

6) When the driver installation is executed, the following screen will be displayed. Then, click “Install”.   
  ("You do not have to check Always trust software from "Nippon Pulse Motor Co., Ltd.") 
 

 

 
 

 

 
7) When the driver installation is completed normally, the following screen will be displayed.    
 

 

 
 

 

 

 

 
2.4.3 Installation Procedure for 64 bit Windows  
 

1) Execute setup.exe (64 bit) with “Run as administrator”. 
   
2) When the software set-up is completed, the driver installation wizard will be executed continuously. 

Follow the instructions on the screen to complete the installation of the driver.  
 



YA7233-0/6E 

- 12 - 

2.5 CN1 Pin Assignment: Emergency Input  
Board side connector: 2317RJ-02 (NELTRON) 
Cable side connector: A2501H02-2P (JOWLE)  
 

No. Name Function 
1 EGND Ext. Power ground 
2 EMG Emergency signal 

 
Note: CN1 is a plug-in terminal board with no screw. 

 
 

2.6 CN2 Pin Assignment: Main Connector 
CN2 is a major connector for motion control I/O signals. 
Board side connector: 0-5787082-9 (AMP) 
Cable side connector: Z1-013100 (All Best Electronics)  
 

No. Name I/O Function No. Name I/O Function 

1 VDD O +5V power supply output 51 VDD O +5V power supply output 

2 EGND - Ext. power ground 52 EGND - Ext. power ground 

3 OUT0+ O Pulse signal (+) 53 OUT2+ O Pulse signal (+) 

4 OUT0− O Pulse signal (−) 54 OUT2− O Pulse signal (−) 

5 DIR0+ O Dir. signal (+) 55 DIR2+ O Dir. signal (+) 

6 DIR0− O Dir. signal (−) 56 DIR2− O Dir. signal (−) 

7 SVON0 O Servo On/Off 57 SVON2 O Servo On/Off 

8 ERC0 O Dev. ctr, clr. Signal 58 ERC2 O Dev. ctr, clr. signal 

9 ALM0 I Alarm signal 59 ALM2 I Alarm signal 

10 INP0 I In-position signal 60 INP2 I In-position signal 

11 RDY0 I Multi-purpose Input signal 61 RDY2 I Multi-purpose Input signal 

12 EGND - Ext. power ground 62 EGND - Ext. power ground 

13 EA0+ I Encoder A-phase (+) 63 EA2+ I Encoder A-phase (+) 

14 EA0− I Encoder A-phase (−) 64 EA2− I Encoder A-phase (−) 

15 EB0+ I Encoder B-phase (+) 65 EB2+ I Encoder B-phase (+) 

16 EB0− I Encoder B-phase (−) 66 EB2− I Encoder B-phase (−) 

17 EZ0+ I Encoder Z-phase (+) 67 EZ2+ I Encoder Z-phase (+) 

18 EZ0− I Encoder Z-phase (−) 68 EZ2− I Encoder Z-phase (−) 

19 VDD O +5V power supply output 69 VDD O +5V power supply output 
20 EGND - Ext. power ground 70 EGND - Ext. power ground 
21 OUT1+ O Pulse signal (+) 71 OUT3+ O Pulse signal (+) 
22 OUT1− O Pulse signal (−) 72 OUT3− O Pulse signal (−) 
23 DIR1+ O Dir. signal (+) 73 DIR3+ O Dir. signal (+) 
24 DIR1− O Dir. signal (−) 74 DIR3− O Dir. signal (−) 
25 SVON1 O Servo On/Off 75 SVON3 O Servo On/Off 
26 ERC1 O Dev. ctr, clr. Signal 76 ERC3 O Dev. ctr, clr. signal 
27 ALM1 I Alarm signal 77 ALM3 I Alarm signal 



YA7233-0/6E 

- 13 - 

 

No. Name I/O Function No. Name I/O Function 

28 INP1 I In-position signal 78 INP3 I In-position signal 

29 RDY1 I Multi-purpose Input signal 79 RDY3 I Multi-purpose Input signal 

30 EGND - Ext. power ground 80 EGND - Ext. power ground 

31 EA1+ I Encoder A-phase (+) 81 EA3+ I Encoder A-phase (+) 

32 EA1− I Encoder A-phase (−) 82 EA3− I Encoder A-phase (−) 

33 EB1+ I Encoder B-phase (+) 83 EB3+ I Encoder B-phase (+) 

34 EB1− I Encoder B-phase (−) 84 EB3− I Encoder B-phase (−) 

35 EZ1+ I Encoder Z-phase (+) 85 EZ3+ I Encoder Z-phase (+) 

36 EZ1− I Encoder Z-phase (−) 86 EZ3− I Encoder Z-phase (−) 

37 PEL0 I End limit signal (+) 87 PEL2 I End limit signal (+) 

38 MEL0 I End limit signal (−) 88 MEL2 I End limit signal (−) 

39 CMP0 O Position compare output 0 89 LTC2 I Position latch input 2 

40 SD/PCS0 I Ramp-down signal 0 90 SD/PCS2 I Ramp-down signal 2 

41 ORG0 I Origin signal 91 ORG2 I Origin signal 

42 EGND - Ext. power ground 92 EGND - Ext. power ground 

43 PEL1 I End limit signal (+) 93 PEL3 I End limit signal (+) 

44 MEL1 I End limit signal (−) 94 MEL3 I End limit signal (−) 

45 CMP1 O Position compare output 1 95 LTC3 I Position latch input 3 

46 SD/PCS1 I Ramp-down signal 1 96 SD/PCS3 I Ramp-down signal 3 

47 ORG1 I Origin signal 97 ORG3 I Origin signal 

48 EGND - Ext. power ground 98 EGND - Ext. power ground 

49 EGND - Ext. power ground 99 E_24V - Isolation power Input, +24V 

50 EGND - Ext. power ground 100 E_24V - Isolation power Input, +24V 

 
Note: It is necessary to supply 24 V external power supply to E_24 V terminal. Please refer to “Power 

supply configuration” (Section 3.17). 
 



YA7233-0/6E 

- 14 - 

2.7 P1 Pin Assignment: Manual Pulser Input  
 

The signals on P1 are for manual pulser input.  
 
Board side connector: 23N6960-10S10B-01G-V10-G (JIH) 
Cable side connector: 110M10-HA12A (KEENTOP) 

 
No. Name Function (Axis) 

1 EX + 5 V Isolated Power + 5 V Output 

2 PA+ Pulser A+ phase signal input 

3 PA− Pulser A− phase signal input 

4 PB+ Pulser B+ phase signal input 

5 PB− Pulser B− phase signal input 

6 EGND External Ground 

7 N/A Not Available 

8 N/A Not Available 

9 N/A Not Available 

 
Note: EX + 5V is isolated from the bus power supply. Please refer to the “Power supply configuration” 

(Section 3.17).  
 

 

2.8 K1/K2 Pin Assignment: Simultaneous Start/Stop 
 

K1/K2 are connectors for simultaneously start/stop signals for multiple axes of multiple boards. 
Board side connector:  2317RJ-04 (NELTRON) 
Cable side connector:  2318HJ-04 (NELTRON) 

 

No. Name Function 

1 N/A N/A 

2 STA Simultaneous start signal input/output 

3 STP Simultaneous stop signal input/output 

4 GND Power ground 

 
Note: GND terminals are connected to the PCIe bus power supply GND. Please refer to the “Power 

supply configuration” (Section 3.17).  
 



YA7233-0/6E 

- 15 - 

2.9 CN5 Pin Assignment: General Purpose Input/Output 
 
The signals on CN5 connector are for general purpose input/output. 
Board side connector:  23N6850-44M10B-01G-7.6–C (JVE) 
Cable side connector:  MFC-44 (YELE) 

 

No. Name I/O Function No. Name I/O Function 

1 GND -- Power ground 2 GND -- Power ground 

3 EDI0 I Digital Input 0 4 EDI1 I Digital Input 1 

5 EDI2 I Digital Input 2 6 EDI3 I Digital Input 3 

7 EDI4 I Digital Input 4 8 EDI5 I Digital Input 5 

9 VCC O Power + 3.3 V 10 GND -- Power ground 

11 EDI6 I Digital Input 6 12 EDI7 I Digital Input 7 

13 EDI8 I Digital Input 8 14 EDI9 I Digital Input 9 

15 EDI10 I Digital Input 10 16 EDI11 I Digital Input 11 

17 GND -- Power ground 18 GND -- Power ground 

19 EDI12 I Digital Input 12 20 EDI13 I Digital Input 13 

21 EDI14 I Digital Input 14 22 EDI15 I Digital Input 15 

23 EDO0 O Digital Output 0 24 EDO1 O Digital Output 1 

25 EDO2 O Digital Output 2 26 EDO3 O Digital Output 3 

27 GND -- Power ground 28 GND -- Power ground 

29 EDO4 O Digital Output 4 30 EDO5 O Digital Output 5 

31 EDO6 O Digital Output 6 32 EDO7 O Digital Output 7 

33 EDO8 O Digital Output 8 34 EDO9 O Digital Output 9 

35 GND -- Power ground 36 VCC O Power + 3.3 V 

37 EDO10 O Digital Output 10 38 EDO11 O Digital Output 11 

39 EDO12 O Digital Output 12 40 EDO13 O Digital Output 13 

41 EDO14 O Digital Output 14 42 EDO15 O Digital Output 15 

43 GND -- Power ground 44 GND -- Power ground 

 

 
Note: The VCC (power supply+ 3.3 V) is supplied directly by the PCIe bus power supply. The GND 

terminal is connected to the PCIe bus power supply GND. Please refer to the “Power supply 
configuration” (Section 3.17). 



YA7233-0/6E 

- 16 - 

The terminal assignment of D-SUB 37P connector on the extension cable (optional) is listed as follows: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

No. Name I/O Function No. Name I/O Function 

1 GND -- Power ground 20 GND -- Power ground 

2 EDI0 I Digital Input 0 21 EDO0 O Digital Output 0 

3 EDI1 I Digital Input 1 22 EDO1 O Digital Output 1 

4 EDI2 I Digital Input 2 23 EDO2 O Digital Output 2 

5 EDI3 I Digital Input 3 24 EDO3 O Digital Output 3 

6 EDI4 I Digital Input 4 25 EDO4 O Digital Output 4 

7 EDI5 I Digital Input 5 26 EDO5 O Digital Output 5 

8 EDI6 I Digital Input 6 27 EDO6 O Digital Output 6 

9 EDI7 I Digital Input 7 28 EDO7 O Digital Output 7 

10 EDI8 I Digital Input 8 29 EDO8 O Digital Output 8 

11 EDI9 I Digital Input 9 30 EDO9 O Digital Output 9 

12 EDI10 I Digital Input 10 31 EDO10 O Digital Output 10 

13 EDI11 I Digital Input 11 32 EDO11 O Digital Output 11 

14 EDI12 I Digital Input 12 33 EDO12 O Digital Output 12 

15 EDI13 I Digital Input 13 34 EDO13 O Digital Output 13 

16 EDI14 I Digital Input 14 35 EDO14 O Digital Output 14 

17 EDI15 I Digital Input 15 36 EDO15 O Digital Output 15 

18 GND -- Power ground 37 NC - - 

19 VCC O Power + 3.3 V     

 

 

 

 

  +10 

250-0 mm 



YA7233-0/6E 

- 17 - 

2.10 Jumper Setting for Pulse Output  
 

J1~J8 is used to set the signal type of pulse output signals (DIR and OUT).The output signal types can 
be selected either differential line driver output or single ended output. Please refer to section 3.1 for the 
details of jumper settings. The default setting is the differential line driver mode. 
 

  

 J1     J2     J3     J4     J5     J6     J7     J8
3
2
1Line Driver

(Open Collector) +5V 

 
2.11 SW1 Board Index setting 
 

SW1 is used to set a board index. For example, if SW1 is set to ON and the others are to OFF, the board 
index will be 1. The index value can be set from 0 to 11. The values from 12 to 15 are unable to use. The 
default setting is 0. Please refer to the below table for the details.  

 
Setting of SW1 switch  

 
 

Board ID SW1 Setting(ON=1) 
1 2 3 4 

0 OFF OFF OFF OFF 
1 ON OFF OFF OFF 
2 OFF ON OFF OFF 
3 ON ON OFF OFF 
4 OFF OFF ON OFF 
5 ON OFF ON OFF 
6 OFF ON ON OFF 
7 ON ON ON OFF 
8 OFF OFF OFF ON 
9 ON OFF OFF ON 
10 OFF ON OFF ON 
11 ON ON OFF ON 

 

 

2.12 SW2 Switch setting for the logic of EL  
 

SW2 switch is used to set the EL limit switch type. It will be “HIGH” when you switch off. The default 
setting of EL switch type is “LOW”. 
For your safety, please set so that the end limit becomes active when a breakdown or a disconnection 
occurs.  
 
 
Setting of SW2 switch on board 

 

 

 EL = “LOW”, The input logic on ±EL is positive

EL = “HIGH”, The input logic on ±EL is negative

SW2

  0  1  2  3     Axis

ON

OFF

 
 

 

(Single Ended)  +5V  



YA7233-0/6E 

- 18 - 

2.13 SW3 Switch Setting to Enable Emergency Input  
 

SW3 switch is used to enable the Emergency signal from CN1. The default setting is “Disable 
Emergency function”. For details, please refer to section 3.15.  

 

.  

 Disable Emergency function

Enable Emergency Input from CN1
 

Disable Emergency function 

Enable Emergency function 



YA7233-0/6E 

- 19 - 

3. Signal Connections  
 

In this chapter, connections of all of the I/O signals are described. Please refer to the contents of this 
chapter before wiring PPCIe-8443 and the motor drivers.  

 

 
This chapter describes the following items:   

Section 3.1 Pulse output signals OUT and DIR  
Section 3.2 Encoder feedback signals EA, EB and EZ  
Section 3.3 Origin signal ORG 
Section 3.4 End-limit signals PEL and MEL 
Section 3.5 Ramping-down & PCS  
Section 3.6 In-position signal INP  
Section 3.7 Alarm signal ALM 
Section 3.8 Deviation counter clear signal ERC 
Section 3.9 General-purpose output signal SVON  
Section 3.10 General-purpose input signal RDY  
Section 3.11 Position compare output terminal: CMP  
Section 3.12 Position latch input terminal: LTC  
Section 3.13 Pulser input signals PA and PB 
Section 3.14 Simultaneous start/stop signals STA and STP  
Section 3.15 Emergency input EMG 
Section 3.16 General purpose Input / Output EDI and EDO 
Section 3.17 Power supply configuration 

 
 



YA7233-0/6E 

- 20 - 

3.1 Pulse Output Signals OUT and DIR 
 

As for the pulse output signals, the differential signal output for OUT signal and DIR signal is available 
for each of 4 axes.  For the signal logic settings of OUT signals and DIR signals, please refer to section 
4.1.1. Pulse output signal of CN2 is as shown in the table below:  

          

CN2 Terminal No. Signal Name Description Axis No. 

3 OUT0+ Pulse signals (+) 0 
4 OUT0− Pulse signals (−) 0 
5 DIR0+ Direction signal (+) 0 
6 DIR0− Direction signal (−) 0 
21 OUT1+ Pulse signals (+) 1 
22 OUT1− Pulse signals (−) 1 
23 DIR1+ Direction signal (+) 1 
24 DIR1− Direction signal (−) 1 
53 OUT2+ Pulse signals (+) 2 
54 OUT2− Pulse signals (−) 2 
55 DIR2+ Direction signal (+) 2 
56 DIR2− Direction signal (−) 2 
71 OUT3+ Pulse signals (+) 3 
72 OUT3− Pulse signals (−) 3 
73 DIR3+ Direction signal (+) 3 
74 DIR3− Direction signal (−) 3 

 
 

For OUT signal and DIR signal, either Line driver output or single-ended output can be selected with jumpers.  
The correspondence of jumpers J1 to J8 to each signal is as shown in the table below:   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
1-2 short: Line driver output 
2-3 short: Single-ended output 

 

Output Signal        Corresponding Jumper 

OUT0+ J1 

DIR0+ J2 

OUT1+ J3 

DIR1+ J4 

OUT2+ J5 

DIR2+ J6 

OUT3+ J7 

DIR3+ J8 



YA7233-0/6E 

- 21 - 

The default settings of OUT and DIR signals are differential line driver mode. The output circuit of OUT 
and DIR signals of each 4 axes is as follows: 
 

 

 

OUT+, DIR+ 

OUT-, DIR-

AM26C31 
 

 

 

OUT, DIR  
PCL6046

 

3.3V 
 2  1  

3  
EX+5V Jump 

 

CN2 

330Ω

EX+5V

 
390Ω

 
Note 1: When the jumper is set to single ended output mode, please use OUT- and DIR- signals. 
Note 2: The maximum sink current capacity of each OUT− and DIR− signals is 20 mA. Please do not 

exceed it.  
Please note that the power is supplied from EX + 5 V power source, but the maximum capacity of 
EX + 5 V is 500 mA in total.  

 
3.2 Encoder Feedback Signals: EA, EB, and EZ 

Encoder feedback signals include EA, EB, and EZ signals. Each axis has 6 signal terminals for differential 
pairs of A-phase (EA), B-phase (EB), and Z-phase (EZ) input. EA and EB are used for position counting 
and EZ is used for Z phase input (zero position index). Signal names, terminal numbers and axis 
number are shown in the following table.  

 
CN2 Terminal No Signal Name Axis No. CN2 Terminal No Signal Name Axis No.  

13 EA0+ 0 63 EA2+ 2 
14 EA0− 0 64 EA2− 2 
15 EB0+ 0 65 EB2+ 2 
16 EB0− 0 66 EB2− 2 
31 EA1+ 1 81 EA3+ 3 
32 EA1− 1 82 EA3− 3 
33 EB1+ 1 83 EB3+ 3 
34 EB1− 1 84 EB3− 3 

 
CN2 Terminal No Signal Name Axis No.  CN2 Terminal No Signal Name Axis No.  

17 EZ0+ 0 67 EZ2+ 2 
18 EZ0− 0 68 EZ2− 2 
35 EZ1+ 1 85 EZ3+ 3 
36 EZ1− 1 86 EZ3− 3 

 

 

 

 

Jumper 



YA7233-0/6E 

- 22 - 

The input circuits of EA, EB, and EZ signals are as follows: 

 

EA+ EB+ EZ+
 

  
Ea Eb Ez
PCL6046

 
CN2 

3.3V 

EA- EB- EZ-

240Ω
330Ω

100pF

 
 

The differential pair signals (EA+, EA−), (EB+, EB−), (EZ+, EZ−) of the encoder input must have a 
potential difference of at least 3.5 V or higher. Therefore, please pay attention to the driving capability 
when connecting with encoder feedback or motor driver feedback. The differential signal pairs will be 
converted to digital signals EA, EB, EZ to connect with PCL 6046 chip. 

 
   The following are the two examples of connecting an input circuit with an external encoder or motor 

driver.   
 

Connection to Line driver output 
To drive the encoder input, the driver output must provide at least 3.5 V across the differential pairs with 
6 mA driving capability. The GND levels of the two sides need to be tied together. 

 

 
EA+ , EB+ , EZ+

EA- , EB- , EZ-
EGND

PPCIe-8443

GND

A,B phase signals 
Index signal

External  Encoder/Driver 
With line driver output

 
 

Connection to Open Collector Output 
To connect with open collector output, an external power supply is necessary. The connection between 
PPCIe-8443, the encoder, and the power supply is shown in the following diagram. Please note that 
the external current limit resistor R is necessary to protect the PPCIe-8443 input circuit in accordance 
with the signal voltage. The following table shows the suggested resistor value according to the encoder 
power supply.   

 
Encoder Power (VDD) External Resistor R 

 + 5 V 0 (None) 
+ 12 V 1.8 kΩ 
+ 24 V 4.3 kΩ 

If=6 mA Max 
 
PPCIe-8443 
 
EA+, EB+, EZ+ 
EA−, EB−, EZ− 
 
 
 
 

For more detail operations of encoder feedback signals, please refer to section 4.4.2.    
 

R 
VDD 
GND 

External power supply for encoder 

Motor Encoder/Driver 
with open collector output 

A/B phase signal 
Z phase (index) signal 

If = 5 mA Min. 

A/B phase signal 
Z phase (index) signal 



YA7233-0/6E 

- 23 - 

3.3 Origin Signal ORG (Home return) 
 

The origin signals (ORG0 ~ ORG3) are used as input signal for the origin of a mechanism. The relative 
signal names, terminal numbers and axis numbers are shown in the following table: 

 
 

CN2 Terminal No Signal Name Axis No 
41 ORG0 0 
47 ORG1 1 
91 ORG2 2 
97 ORG3 3 

 
The input circuit of ORG signal is shown as follows. Usually, ORG signal is used to indicate the 
mechanical origin positon of an axis. Internally, a CR filter circuit is built-in to prevent noise issues. 

 

 

EX+24V

PCL6046

EGND 

 

ORG  

2.2K

 

ORG  

 

CN2 
Ω

3.3V 

74LS14

1KΩ
100Ω

0.01uF

  
 

When the motion controller is operated in the Home return mode, ORG signal is used to stop control 
output signals (OUT and DIR signals). For detail operations of ORG, please refer to section 4.3.3. 

 

 

 

 

If = 6mA Min. 



YA7233-0/6E 

- 24 - 

3.4 End-Limit Signals: PEL and MEL 
 

There are two end-limit signals PEL and MEL for each axis. PEL indicates end limit signal in plus 
direction and MEL indicates end limit signal in minus direction. The relative signal names, terminal 
numbers and axis numbers are shown in the following table: 

 
CN2 Terminal No Signal Name Axis No. 

# 
 CN2 Terminal No Signal Name Axis No 

37 PEL0 0  87 PEL2 2 
38 MEL0 0  88 MEL2 2 
43 PEL1 1  93 PEL3 3 
44 MEL1 1  94 MEL3 3 

 
 
The input circuits of PEL and MEL signals are shown as follows. The input logics can be changed by the 
DIP switch (SW 2) on the board. 
Refer to section 2.12. In default setting, all SW 2 have been set to ON. Internally, a CR filter circuit is 
built in to prevent noise issues. For details of end limit signals, please refer to section 4.3.2 

 

 

 

EX+24V

PCL6046

EGND 

 

PEL, MEL 

2.2K

 

PEL, MEL  

 

CN2 
Ω

3.3V 

74LS14

1KΩ
100Ω

0.01uF

 
 

 

If = 6 mA Min. 



YA7233-0/6E 

- 25 - 

3.5 Ramping-Down & PCS 
 

There are SD / PCS signals for each of 4 axes. The relative signal name, terminal number and axis 
number are shown in the following table:  

  

 
CN2 Terminal No Signal Name Axis No 

40 SD / PCS0 0 
46 SD / PCS1 1 
90 SD / PCS2 2 
96 SD / PCS3 3 

 
 

 
The input circuit of the signals is shown as follows. 
Normally, SD signal is used to input a ramp down signal that decelerates the motor speed from high 
speed to low speed. Internally, the CR filter circuit is built-in to prevent noise issues. For details of SD/ 
PCS signals, please refer to section 4.3.1. 

 

 

EX+24V

PCL6046

EGND 

 

SD/PCS 

2.2K

 

PCS, SD  

 

CN2 
Ω

3.3V 

1KΩ
100Ω

0.01uF

 
 

If = 6 mA Min. 



YA7233-0/6E 

- 26 - 

3.6 In-Position Signal: INP 
 

In-position signal (INP) from a servo motor driver indicates the deviation between command pulse and 
feedback pulse is within the set range, and input the positioning completion output signal of the motor 
driver. The relative signal name, terminal number and axis number are shown in the following table: 

 
CN2 Terminal No Signal Name Axis 

 10 INP0 0 
28 INP1 1 
60 INP2 2 
78 INP3 3 

 
The input circuit of the INP signals is shown in the following diagram  

 

INP

PCL6046

EGND 

EX+5V

 
 

INP  
 

CN2 

3.3V  

If = 12mA Max. 
If = 5mA Min.

330Ω1KΩ

 
 

The in-position signal is usually input from a servomotor driver. For the INP signal operation, please 
refer to section 4.2.1. 

 
 



YA7233-0/6E 

- 27 - 

3.7 Alarm Signal: ALM 
 

The alarm signal ALM is used to indicate the alarm status from the servo driver. The relative signal 
name, terminal number and axis number are shown in the following table: 

 
CN2 Terminal No Signal Name Axis No 

9 ALM0 0 
27 ALM1 1 
59 ALM2 2 
77 ALM3 3 

 
The input circuit of an alarm signal is shown in the following diagram. The ALM signals are usually 
output from servomotor drivers. 
For more details of ALM operation, please refer to section 4.2.2. 

 

ALM

PCL6046

EGND 

EX+5V

 
 

ALM  
 

CN2 

3.3V  

If = 12mA Max. 
If = 5mA Min.

1KΩ 330Ω

 



YA7233-0/6E 

- 28 - 

3.8 Deviation Counter Clear Signal: ERC  
 

The deviation counter clear (ERC) signal is active in the following three situations: 
1. When an home return operation is completed 
2. When an error input signal such as end-limit switch, alarm switch, or emergency switch, is turned 

ON. 
3. When an emergency stop command is issued by software. 

 
The relative signal names, terminal numbers and axis numbers are shown in the following table: 

 
CN2 Terminal No Signal Name Axis No 

8 ERC0 0 
26 ERC1 1 
58 ERC2 2 
76 ERC3 3 

 
The ERC signal is used to clear the deviation counter of a servomotor driver. The ERC output circuit is 
an open collector output circuit, and it has the maximum 35 V output power with 15 mA driving capability. 
For more details of ERC operation, please refer to section 4.2.3. 

 

 

 

  
ERC

3.3V  

ERC  
PCL6046

CN2 

EGND  

35V 15mA Max.

100Ω

 



YA7233-0/6E 

- 29 - 

3.9 General Purpose Output Signal SVON 
 

The SVON signals are mainly used for servomotor-on control; however they can be used as general- 
purpose output signals.  
The relative signal name, terminal number and axis number are shown in the following table: 

 

 
CN2 Terminal No Signal Name Axis No 

7 SVON0 0 
25 SVON1 1 
57 SVON2 2 
75 SVON3 3 

 
 

The SVON output circuit is an open collector output circuit, and it has the maximum 35 V output power 
with 15 mA driving capability. For more details of SVON operation, please refer to section 4.2.4. 

 
 

   
SVON  

3.3V  

SVON  
PCL6046

CN2 

EGND  

35V 15mA Max.

100Ω
3.3V 

  
10KΩ

 
 
3.10 General Purpose Input Signal: RDY  
 

The RDY signals are mainly used for motor driver ready input (preparation ready), however, they can be 
used as general purpose input signals. The relative signal name, terminal number and axis number 
are shown in the following table: 

 
CN2 Terminal No Signal Name Axis No 

11 RDY0 0 
29 RDY1 1 
61 RDY2 2 
79 RDY3 3 

 
The input circuit of RDY signal is shown in the following diagram:  

 

RDY

PCL6046

EGND 

EX+5V

 
 

RDY  
 

CN2 

3.3V  

If = 12mA Max. 
If = 5mA Min.

330Ω1KΩ

 



YA7233-0/6E 

- 30 - 

3.11 Position Comparator Output: CMP 
 

The PPCIe-8443 provides two position comparison output channels, and they are only available for the 
first two axes (Axis 0 and Axis 1). A pulse signal will be generated as a comparing output when the 
encoder counter matches the pre-set value set by a user. 
The relative signal name, terminal number and axis number are shown in the following table: 

 

 
CN2 Terminal No Signal Name Axis No 

39 CMP0 0 
45 CMP1 1 

 

 
The output circuit of CMP signal is shown in the following diagram:  

 

CMP  

 

3.3V 
 CN2 

EX+5V  

CMP
FPGA

1KΩ
330Ω

 
 

 

 

 
Note:  CMP output specification can be set either as normal low (rising edge) or as normal high (falling 

edge). The default setting is normal high. Please refer to function _8443_set_trigger_type() in 
section 6.17 for details. Also, CMP terminal can be used as a general purpose output. 

 

 

 

 

 

Output current＝50mA Max. 
VOL = 0.35V Typ. 
 



YA7233-0/6E 

- 31 - 

3.12 Position Latch Input: LTC 
 

The PPCIe-8443 provides two position latch input channels, and they are only available for the last two 
axes, (Axis 2 and Axis 3). The LTC signal can trigger to latch a counter value, so that you can obtain a 
precise position by hardware without going through software.   
The relative signal name, terminal number and axis number are shown in the following table: 

 

 
CN2 Terminal No Signal Name Axis 

N  89 LTC2 2 
95 LTC3 3 

 

 
The input circuit of LTC signal is shown in the following diagram. Please use input voltage range of 0 ~ 5 V.  
 

 

 

LTC  

3.3V  

PCL6046

CN2 

LTC

EGND

470Ω
1KΩ

100pF

 
 

 

 

If = 5 mA Min. 



YA7233-0/6E 

- 32 - 

3.13 Pulser Input Signals: PA and PB 
 

PPCIe-8443 can accept input signals from a pulser through P1 connector. The signal specification of the 
pulser signal is 90 degree phase difference (A/B phase) input, which is the same as encoder signal. The 
motor can be operated following the positioning pulses generated manually by the pulser. 

 

 

P1 Terminal No Signal Name 

2 PA + 

3 PA − 

4 PB + 

5 PB − 
 
 

PA and PB terminals of the connector P1 are directly connected to PA and PB terminals of PCL6046. 
The interface circuits are shown as follows: 

 

 

+5V 

 

  

P1  

PA, PB

 

EGND 

PA+, PB+ 

+5V  

3.3V 

  

PA-, PB-

220Ω
240Ω

100pF

 
 
 

Please note that the voltage across every differential pair of pulser input signals (PA+, PA−) and (PB+, 
PB−) should be at least 3 V or higher. 

 
You can select which axes to be operated by the function _8443_ disable_pulser_input(). 
Please refer to section 6.11 for details. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

EX+5V 

If = 5mA Min. 



YA7233-0/6E 

- 33 - 

Connection with a manual pulser 
 

To operate a pulser input of PPCIe-8443 board, at least 3 V of differential voltage is required in the 
differential pair of the differential driver output. Please make GNDs on both sides in common.   

 

 
(Connection example with the line driver output type) 

  

 

+5V 

 

  

P1  

PA, PB

 

EGND 

PA+, PB+ 

+5V  

3.3V 

  

PA-, PB-

220Ω
240Ω

100pF

 
 

 

 

 

 

 

 

 
(Connection example with open collector output type) 

 

 

+5V 

 

  

P1  

PA, PB

 

EGND 

PA+, PB+ 

+5V  

3.3V 

  

PA-, PB-

220Ω
240Ω

100pF

 
 

 

 

 

 
Refer to section 4.1.12 for operating method using a manual pulser. 
For connection, we recommend to use a shielded cable or a twisted cable in terms of noise immunity. 

 

 

 

 

EGND 

PA+, PB+ 

PA-, PB- 

Note: If the manual pulser itself has a 
power supply, it is not necessary to 
connect the power supply line (VCC) with 
it. 

A/B phase signal 

VCC(Note)
 

 

PPCIe-8443 

PA+, PB+ 

PA-, PB- PA, PB 

Note: If the manual pulser itself has a 
power supply, it is not necessary to 
connect the power supply line (VCC) 
with it.   
 

A/B phase signal 

Line driver output type 
manual pulser  

VCC (Note) 

PPCIe-8443 

EGND 

PA+, PB+ 

PA-, PB- 

Open collector output type 
manual pulser  



YA7233-0/6E 

- 34 - 

3.14 Simultaneous Start/Stop Signals: STA and STP 
 

The PPCIe-8443 provides STA and STP signals, which enable simultaneous start/stop of motions with 
multiple axes. The STA and STP signals are on connectors K1 and K2. 
The following diagram shows the on-board circuits. STA and STP signals of the other boards are tied 
together respectively. The internal circuit is shown in the figure below.  

 

 

 

 

 

 

 

 

 

STP 

K1  

STA  
PCL6046

 

STA 
STP  

K2  
3.3V 3.3V 

4.7KΩ 4.7KΩ

 
 

 
The STP and STA signals are both for input and output. By the software control, signals can be 
generated from any one of the PCL6046 chip on board, and other chip can perform start and stop 
simultaneously by receiving the signals if properly programmed. 
You can also use an external open collector or switch to drive the STA / STP signals for simultaneous 
start / stop. 
If there are two or more PPCIe-8443 boards, cascade K1 / K2 connectors of all boards for simultaneous 
start/stop control. Since the signals are connected in the board, connect K1 / K2 as follows. 

 
 
 
 
 
 

 

 

 

 
To make an external signal initiate simultaneous start or stop, connect the 7406 (open collector) or the 
equivalent circuit as follows: 

 

 

 

 

 

 

 

 

 
 

Note: STA / STP signals will turn ON by setting it to 0.8 V or less with reference to the GND signals of 
No.4 terminal in K1 / K2 connector. It is the PCIe bus power supply GND. For the specification of 
the GND signal, please check the power supply configuration (Section 3.17).  

K1/K2 terminal No. Signal Name 

2 STA 

3 STP 

4 GND 
  

STP 
STA 
GND 

 

STP 
STA 
GND 

 

STP 
STA 
GND 

 
STP 
STA 
GND 

 

STP 
STA 
GND 

 

STP 
STA 
GND 

 

PPCIe-8443 #1 PPCIe-8443 #2 PPCIe-8443 #3 

K1 

K2 

STP 
STA 
GND 

 

STP 
STA 
GND 

 

STP 
STA 
GND 

 
STP 
STA 
GND 

 

STP 
STA 
GND 

 

STP 
STA 
GND 

 

PPCIe-8443 #1 PPCIe-8443 #2 PPCIe-8443 #3 

K1 

K2 

STOP 

START 

GND 



YA7233-0/6E 

- 35 - 

3.15 Emergency Input EMG 
 

PPCIe-8443 provides an emergency input, EMG, in CN1. Once EMG is input, all axes will stop 
immediately to prevent the damage of the machine. 
You can use SW3 to set either enable / disable the emergency signal from CN1. The input circuit of 
EMG signal is shown in the following diagram. Internally, a CR filter circuit is built in to prevent noise 
issues.  

 

EX+24V 

 

EMG

2.2K
3.3V 

CEMG
PCL6046

EGND 

  

 

CN1 

Ω

74LS14SW3

1KΩ
100Ω

0.01uF

 
 

 

 

 

 

3.16 Extended General Purpose Input / Output: EDI and EDO 
 

PPCIe-8443 provides 16 /16 general-purpose digital input / output in CN5. The relative signal name, 
terminal number and axis number are shown in the following table. 
The circuit of general-purpose input/output signals is shown in the following diagram: 

 

VCC 

EDO0-15 

CN5 

EDI0-15  
FPGA

 

GND 

EDI0-15 

EDO0-15

 

 

3.3V
 

100KΩ74LVC244

 
The specifications of digital input and output of general-purpose signals are listed as follows:  

 
[EDI] 

Input Current: 24 mA (max); VIH = 2.0 V (min); VIL = 0.8 V (max); VI = 5.5 V (max) 
 

[EDO] 
Output Current: 24 mA (max): VOH = 3.3 V (max); VOL = 0 V (min) 

 
Note: EDI / EDO are GND based signals of PCIe bus power supply. Please refer to the power supply 

configuration (Section 3.17).  
 

PCL6046 
CEMG 

SW3 

OFF 
(EMG Disable) 

ON 
(EMG Enable) 

 
 



YA7233-0/6E 

- 36 - 

3.17 Power Supply Configuration 
 

The power supply of PPCIe-8443 is shown as follows:  
 

Signal Function Description 

E_24V 
24 V    
External power 
input 

Externally supplied 24 V power supply 
Input voltage: + 24 V DC ± 5%， Required power capacity: 500 mA Max 

Insulated from the bus power supply.  

EX+24V 
24 V    
Internal power 
supply 

24 V power supply used for external signal input supplied from external 24 
V input power supply.   
Insulated from the bus power supply.  

VDD 
+ 5 V     
Power supply 
output 

5 V power supply that can be used externally. It is generated from an 
external 24 V power supply input. 

Output voltage: + 5 V DC ± 5%，Output capacity : VDD and EX + 5 V; 
total 500 mA Max 
Insulated from the bus power supply.  
Overcurrent and reverse voltage protection circuit is built-in. 

EX+5V 
+ 5 V     
Power supply 
output 

5 V power supply that can be used externally. It is generated from an 
external 24 V power supply input.   

Output voltage: + 5 V DC ± 5%，Output capacity : VDD and EX + 5 V; 
Total 500 mA Max 
Insulated from the bus power supply. No protection circuit.  

EGND External power 
supply GND 

GND for external power supply(EX+24V and EX+5V) 
Insulatedfrom the bus power supply.  

VCC 
+ 3.3 V 
bus power 
supply 

3.3 V for board internal control supplied from the bus.  
Used with CN5 for extended general purpose input / output. 

B12V + 12 V bus 
power supply  

12 V for board internal control supplied from the bus. 
Power supply capacity:  250 mA Max 

No output to the outside. 

GND Bus power 
supply GND 

GND for the board internal control supplied from the bus 
Used with extended general purpose input / output CN5 and K1 / K2 for 
simultaneous start / stop  

 
Note 1: Both VDD and EX + 5 V are generated from the external power supply 24 V input, and they are 

5 V voltage which can be used externally. However overcurrent and reverse voltage protection 
circuit is built in only in VDD. 

 

 

 

 

 

 

 

 

 
Note 2: When connecting an external device (a driver or an external encoder) to the 5 V power supply, 

pay attention to the power capacity. 
Note 3: When using the bus power supply, pay extra attention to the noise inflows in wiring or power 

supply capacities. 
 

 

DC/DC 
Converter 

E_24V 

Schottky Diode 
+ Fuse 

EX+5V 

VDD 

+5V 

EX+24V 



YA7233-0/6E 

- 37 - 

4. Operation Theorem 
 
This chapter describes the detail operations of the PPCIe-8443 as follows: 
 

Section 4.1:  Operation control mode 
Section 4.2:  Motor driver interface (INP, ERC, ALM, SVON, RDY) 
Section 4.3:  Mechanical input interface and I/O status (SD / PCS, EL, ORG) 
Section 4.4:  Counters (EA, EB, EZ) 
Section 4.5:  Multiple PPCIe-8443 operation. 
Section 4.6:  Change position or speed on the fly (Override function)   
Section 4.7:  Position compare and Latch 
Section 4.8:  Hardware backlash compensator and vibration suppression 
Section 4.9:  Software limit function 
Section 4.10: Interrupt control 
Section 4.11: Idling control 
 

 

4.1 Motion control mode 
 
In this section, the pulse output signal configurations and the motion control modes are described. 

4.1.1 Output pulse mode 
4.1.2 Velocity mode operation   
4.1.3 Positioning operation for single axis 
4.1.4 S-curve profile acceleration/deceleration operation   
4.1.5 Linear interpolation for two to four axes 
4.1.6 Circular interpolation for two axes 
4.1.7 Circular interpolation with acceleration/deceleration time 
4.1.8 Helical interpolation  
4.1.9 Relationship between velocity and acceleration time 
4.1.10 Continuous operation  
4.1.11 Home return operation  
4.1.12 Manual pulser operation  
4.1.13 Timer mode 
4.1.14 Pulser interpolation 

 

 

 



YA7233-0/6E 

- 38 - 

4.1.1 Output Pulse Mode 
 

PPCIe-8443 uses a pulse command to control servo/stepper motors via drivers. The pulse command 
consists of two signals: OUT and DIR. There are three output pulse modes: 1) Common pulse output 
mode (OUT/DIR), 2) 2 pulse output mode (CW/CCW type pulse output), and 3) 90 degree phase 
difference output. 
The software function: _8443_set_pls_outmode() is used to program the output pulse mode. The 
mode vs. signal type of OUT and DIR terminal are shown in the following table: 

 

 

Mode OUT terminal DIR terminal 
Common pulse mode (OUT/DIR) Pulse signal Direction signal (Level) 

2 pulse mode (CW/CCW) CW signal CCW signal 
90 degree phase difference    

(A/B phase) mode 
90 degree phase 
difference signal 

90 degree phase 
difference signal 

 
The interface characteristics of these signals can be set either in differential line driver output or 
single-ended output. Please refer to section 3.1 for the jumper setting for the output. 

 
Three types of pulse output modes are explained below. 
On this board, the direction in which the command pulse counts up is CW, and the direction to count 
down is CCW. Please note that the direction of motor rotation and the direction of CW and CCW of this 
board may be different depending on the motor manufacturer. 

 
Common pulse mode (OUT / DIR) 
In this mode, OUT signal will be the command pulse.  
The number of OUT pulse signal will represent the relative “distance” or “position”, and the frequency of 
the OUT pulse signal will represent the command for “speed” or “velocity”.  
The DIR signal will represent the command direction of positive (+) or negative (−). 
 
The following figures show the output waveforms. You can select the logic of pulse signal from the 
following: 

pls_outmode = 0:
OUT

DIR (+) (-)

pls_outmode = 1:
OUT

DIR (+) (-)

pls_outmode = 2:
OUT

DIR (+) (-)

pls_outmode = 3:
OUT

DIR (+) (-)

 

 

(CW operation) 

(CW operation) 

(CW operation) 

(CW operation) 

(CCW operation) 

(CCW operation) 

(CCW operation) 

(CCW operation) 



YA7233-0/6E 

- 39 - 

2 pulse mode (CW/CCW) 
In this mode, the waveform of the OUT and DIR terminals represent CW (clockwise) and CCW (counter 
clockwise) command pulse output respectively. Pulse output from CW terminal makes a motor move in 
positive direction (CW), while pulse output from CCW terminal makes a motor move in negative 
direction (CCW). The following diagram shows the output waveforms of CW and CCW commands. 

 

 
pls_outmode = 4:

(CW)
(CCW)

OUT

DIR
Positive direction

Negative direction

(CW)
(CCW)

OUT

DIR

pls_outmode = 5:
(CW)
(CCW)

OUT

DIR
Positive direction

Negative direction

(CW)
(CCW)

OUT

DIR

 
90 degree phase difference (A / B phase) mode  
In this mode, OUT signal is output by 90 degree phase ahead (behind) of the DIR signal. “Ahead” or 
“behind” of phase difference between the two signals will determine the direction of motor rotation. 
When the OUT signal is 90 degree phase ahead of DIR signal in mode 6, the motor is running in CW 
direction. In opposite, when the OUT signal is 90 degree phase behind of DIR signal in mode 7, the 
motor is running in CW direction.  
 

 
pls_outmode = 6:
OUT

DIR
Positive direction

Negative direction

OUT

DIR

pls_outmode = 7:
OUT

DIR
Positive direction

Negative direction

OUT

DIR

 

 

 
Related functions: 
_8443_set_pls_outmode(): Refer to section 6.4. 
 

(CW operation) 

(CW operation) 

(CCW operation) 

(CCW operation) 

(CW operation) 

(CW operation) 

(CCW operation) 

(CCW operation) 

OUT (CW) 

DIR (CCW) 

(CW) 

(CCW) 

OUT (CW) 

DIR (CCW) 

(CW) OUT (CW) 

DIR (CCW) 

(CW) OUT (CW) 

DIR (CCW) 



YA7233-0/6E 

- 40 - 

4.1.2 Velocity Mode Operation 
 
This mode is used to operate one axis motor in velocity mode. Output pulse trains accelerate from the 
starting velocity (StrVel) to the specified constant velocity (MaxVel). _8443_tv_move() function is used 
to accelerate constantly while _8443_sv_move() function is used to accelerate with S-curve accel/decel. 
The pulse output rate will be maintained at maximum velocity until another velocity command is set or 
stop command is issued.  
_8443_v_change() is used to change speed during operations. Before this function is applied, be sure 
to call _8443_fix_speed_range(). Please refer to section 4.6 for more detail explanation. The 
_8443_sd_stop() is used to decelerate and stop.  
_8443_emg_stop() function is used to immediately stop the motion.  
 
The speed change function and the speed setting of stop function follow the setting of the initial 
operation command such as tv_move or sv_move function. The velocity profiles with the functions are 
shown as follows: 
 
Note: The speed change function and stop functions can be used for positioning operation (for single 
axis positioning; refer to section 4.1.3 and S-curve profile operation, refer to section 4.1.4) or home 
return operation (refer to 4.1.11). 
 
 

 
Related functions: 
_8443_tv_move(),_8443_sv_move(),_8443_v_change(), 
_8443_sd_stop(),_8443_emg_stop(),_8443_fix_speed_range(), 
_8443_unfix_speed_range() 
: Refer to section 6.5 
 

 



YA7233-0/6E 

- 41 - 

4.1.3 Positioning Operation for Single Axis 
 
This mode is used to move an axis to a specified position (or distance) with a specified velocity profile. Two 
kinds of motion profile, absolute and relative motions, can be performed.  
In absolute mode, a target position is specified. In relative mode, relative distance (number of pulses) to the 
target position is specified.  
In both absolute and relative mode, acceleration and deceleration can be set in different values. 
_8443_motion_done() function is used to check if the movement is completed. 
The following figure shows the trapezoidal profile. 

 

 MaxVel

StrVelStrVel

Time  (second)

TdecTacc

Velocity 
(pps)

 
There are two trapezoidal point-to-point positioning functions supported by PPCIe-8443. 
 
In _8443_start_ta_move() function, the absolute target position is given in the unit of pulse. The physical 
length or angle of one movement is dependent on the resolution (moving amount per one pulse). In the 
absolute positioning mode, the value of the feedback counter is referenced and then commanded. 
In advance, the external encoder feedback source need to be set by _8443_set_feedback_src() function. 
And the ratio between the command pulses and the external feedback pulses must be appropriately set by 
_8443_set_move_ratio() function. 
 
In _8443_start_tr_move() function, the moving position (distance) in the relative mode is set in the unit of 
pulse.  
Unsymmetrical trapezoidal velocity profile (Tacc is not equal to Tdec) can be specified in both 
_8443_start_ta_move() and _8443_start_tr_move() functions. 
 
The StrVel and MaxVel parameters are given in the unit of pulse per second (pps). The Tacc and Tdec 
parameters are given in the unit of second represent accel/decel time respectively. You have to know the 
physical meaning of “one pulse” to calculate the physical value of the relative velocity or acceleration 
parameters. The following formula gives the basic relationship between these parameters. 
MaxVel = StrVel + accel *Tacc;  
StrVel = MaxVel + decel *Tdec; 
 
Accel/decel represents the acceleration / deceleration rate in unit of pps /sec. The area inside the 
trapezoidal profile represents the moving distance. The unit of velocity setting is pulses per second (pps). 
Usually, the unit of velocity in the manual of motor or driver is in rounds per minute (rpm). A simple 
conversion is necessary to match between these two units.  
 
 
 
 
 
 
 
 
 



YA7233-0/6E 

- 42 - 

For example, if an incremental type encoder is mounted on the working table to measure the actual 
position of moving part. A servo motor is used to drive the moving part through a gear mechanism. The 
gear mechanism is used to convert the rotating motion of motor into linear motion. (See the following 
diagram). If the resolution of motor is 8000 pulses / round. The resolution of gear mechanism is 100 mm 
/ round. (i.e., part moves 100 mm if motor turns one round). Then the resolution of command pulse will 
be 80 pulses / mm. If the resolution of encoder mounting on the table is 200 pulses / mm. Then you have 
to set the move ratio as 200 / 80 = 2.5 by the function: 

 
_8443_set_move_ratio (axis, 2.5); 

 

 
 

 
In case of absolute mode, pay attention to input mode (multiplication) setting of encoder feedback pulse. 
 
If this ratio is not set before issuing the start moving command, it will cause problems when running in 
“Absolute Mode” since PPCIe-8443 cannot recognize the actual absolute position during the operation.  
 
Related functions: 
_8443_start_ta_move(),_8443_start_tr_move(): Refer to section 6.6 
_8443_motion_done(): Refer to section 6.12 
_8443_set_feedback_src(): Refer to section 6.4 
_8443_set_move_ratio(): Refer to section 6.6 
 

 
Motor  

 
Gear 

Slider  
 

Table  

Encoder 



YA7233-0/6E 

- 43 - 

4.1.4 S-curve Profile Acceleration / Deceleration Operation 
 

In S-curve acceleration / deceleration operations, vibrations are suppressed by smooth start of acceleration 
and smooth transition to the constant speed. 
Smooth operations can reduce the load on the motor and the machine to extend the lives. 
For S-curve acceleration / deceleration operation, setting of the following parameters is required.  
 
Pos: target position in absolute mode (pulse)  
Dist: moving distance in relative mode (pulse)  
StrVel: start velocity, (PPS) 
MaxVel: maximum velocity, (PPS) 
Tacc:  time for acceleration (StrVel     MaxVel) (sec) 
Tdec: time for deceleration (MaxVel    StrVel) (sec) 
SVacc: S-curve section during acceleration (pps) 
SVdec: S-curve section during deceleration (pps) 
 

 
Velocity 
(PPS)

MaxVel

StrVel

SVacc

SVacc

SVdec

SVdec

TdecTacc
Time  
(second)

 
 

 
In S-curve operation, acceleration / deceleration consists of one linear part and two S-curve sections. 
In the first S-curve section, the velocity accelerates from StrVel to (StrVel + SVacc). Then, it is linear 
acceleration until the second S-curve section. 
Finally, the velocity is accelerated from (MaxVel - SVacc) to MaxVel in the second S curve section. 
Deceleration will be the same rule as well. 
 
Note: 
If you want to remove the linear part, the SVacc/SVdec must be assigned “0”. 
 
Remember that SVacc/SVdec is in unit of pps, and it should always keep in the range of [0 ~ (MaxVel − 
StrVel)/2], where “0” means no linear part. The S-curve profile motion functions are designed to always 
produce smooth motion.  
 
 
 
 
 
 
 
 
 
 
 
 



YA7233-0/6E 

- 44 - 

If the time for linear / s-curve acceleration parameters combined with the final position does not allow the 
axis to reach the maximum velocity (i.e.: the moving distance is too small to reach MaxVel), the maximum 
velocity is automatically lowered (See the figure below). 
The rule is to lower the value of MaxVel and Tacc, Tdec, SVacc, SVdec automatically, and keep StrVel, 
acceleration and jerk unchanged. It is also applicable to the trapezoidal profile motion. 
 

 
 

Related functions: 
_8443_start_sr_move(),_8443_start_sa_move(): Refer to section 6.6 
_8443_motion_done(): Refer to section 6.12 
_8443_set_feedback_src(): Refer to section 6.4  
_8443_set_move_ratio(): Refer to section 6.6 
 
The following table shows the difference in single axis motion functions, including the Preset Mode (both 
trapezoidal and S-curve motions) and the constant velocity mode. 
 

 

 
Velocity Profile  

Relative 
 
Absolute Trapezoidal S-curve 

_8443_tv_move O - - - 

_8443_sv_move - O - - 

_8443_v_change O O - - 

_8443_sd_stop O O - - 

_8443_emg_stop() - - - - 

_8443_start_ta_move O - - O 

_8443_start_tr_move O - O - 

_8443_start_sr_move - O O - 

_8443_start_sa_move - O - O 

Time (second) 

Velocity (pps) 



YA7233-0/6E 

- 45 - 

4.1.5 Linear Interpolation for Two to Four Axes 
 
In this mode, any 2 of the 4 axes, 3 of the 4 axes, or all of the 4 axes may be chosen to perform a linear 
interpolation. “Interpolation between multi-axes” means these axes “start simultaneously, and reach their 
ending points at the same time”. Linear means that the ratio of speed of every axis is a constant value. 
Notice that you cannot perform 2 groups of 2 axes linear interpolation in one board at the same time. But 
you can use one 2 axes linear and one 2 axes circular interpolation at the same time. If you want to stop 
one interpolation group, you can just use _8443_sd_stop() or _8443_emg_stop() for the first axis of the 
group as parameter to stop the all axes in this interpolation. 
 
2 axes linear interpolation 
As in the figure below, 2 axes linear interpolation means to move the XY (or any 2 of 4 axes) position from 
P0 to P1. The 2 axes start and stop simultaneously, and the path is a straight line. 
 

 

 

X-axis

Y-axis
P1(X1,Y1)

P0(X0,Y0)
∆ Y

∆ X

 
The speed ratio along X-axis and Y-axis is ( X : Y), respectively, and the vector speed is: 

 

 
 
When calling the 2 axes linear interpolation functions, it is the vector speed to define the start velocity, 
StrVel, and the maximum velocity, MaxVel (Both trapezoidal and S-curve profile are available). 
 
Example: 
_8443_start_tr_move_xy(0,30000.0,40000.0,1000.0,5000.0,0.1,0.2) 
 
It will execute X and Y axes (axes 0 & 1) of board 0 to perform a linear interpolation movement, in which:  
 

X = 30000 pulse 
Y = 40000 pulse 

Start vector speed=1000 pps, X speed=600 pps, Y speed=800 pps 
Max. vector speed=5000 pps, X speed=3000 pps, Y speed=4000 pps 
Acceleration time = 0.1 sec  
Deceleration time = 0.2 sec 

 
There are two groups of functions that provide 2 axes linear interpolation. 
1. The first group divides the 4 axes into XY (axis 0 & axis 1) and ZU (axis 2 & axis 3). By calling these 

functions, the target axes are already assigned. 
_8443_start_tr_move_xy(), _8443_start_tr_move_zu(), 
_8443_start_ta_move_xy(), _8443_start_ta_move_zu(), 
_8443_start_sr_move_xy(), _8443_start_sr_move_zu(), 
_8443_start_sa_move_xy(), _8443_start_sa_move_zu(), 

: Refer to section 6.7 
 

X axis  

Y axis 



YA7233-0/6E 

- 46 - 

2. The second group allows you to assign the 2 target axes freely. 
_8443_start_tr_line2(), _8443_start_sr_line2(), 
_8443_start_ta_line2(),_8443_start_sa_line2(), 

: Refer to section 6.7 
 
The characters “t”, “s”, “r”, “a” after _8443_start means:  

t: Trapezoidal profile 
s: S-curve profile  
r: Relative motion 
a: Absolute motion 

 
3 axes linear interpolation 
Any 3 of the 4 axes of PPCIe-8443 may perform 3 axes linear interpolation. As the figure below, 3 axes 
linear interpolation means to move the XYZ (if axes 0, 1, 2 are selected and assigned to be X, Y, Z 
respectively) position from P0 to P1 and start and stop simultaneously. The path is a straight line in space.  
 
 

 P1(X1,Y1,Z1)

P0(X0,Y0,Z0)

X-axis

Y-axis

Z-axis

∆ Y

∆ X

∆ Z

 
The speed ratio along X-axis, Y-axis and Z-axis is (X : Y : Z) respectively, and the vector speed is: 
 

 
 
When calling the 3 axes linear interpolation functions, it is the vector speed to define the start velocity, 
StrVel, and the maximum velocity, MaxVel. Both trapezoidal and S-curve profiles are available. 
 
For example: 
_8443_start_tr_line3(….,1000.0 /* X*/, 2000.0 /* Y*/, 3000.0 /* Z*/, 100.0 /*StrVel*/, 5000.0 
/*MaxVel*/, 0.1 /*sec*/, 0.2 /*sec*/) 

X = 1000 pulse 
Y = 2000 pulse 
Z = 3000 pulse 

Start vector speed=100 pps,  X speed = 100 /  = 26.7 pps 

                          Y speed = 2 * 100 /  = 53.3 pps 

                          Z speed = 3 * 100 /  = 80.1 pps 

Max vector speed=5000 pps,  X speed = 5000 /  = 1336 pps 

                          Y speed = 2 * 5000 /  = 2672 pps 

                          Z speed = 3 * 5000 /  = 4008 pps 
 
 
 



YA7233-0/6E 

- 47 - 

These functions related to 3 axes linear interpolation are listed as follows: 
_8443_start_tr_line3(), _8443_start_sr_line3() 
_8443_start_ta_line3(), _8443_start_sa_line3() 

: Refer to section 6.7 
 
The characters “t”, “s”, “r”, “a” after _8443_start means:  

t: Trapezoidal profile 
s: S-curve profile 
r: Relative motion 
a: Absolute motion 

 
4 axes linear interpolation 
In 4 axes linear interpolation, the speed ratio along X-axis, Y-axis, Z-axis and U-axis is ( X : Y : Z : 

U), respectively, and the vector speed is: 

 
The functions related to 4 axes linear interpolation are listed below: 

_8443_start_tr_line4(), _8443_start_sr_line4() 
_8443_start_ta_line4(),_8443_start_sa_line4() 

: Refer to section 6.7 
 
The characters “t”, “s”, “r”, “a” after _8443_start means:  

t: Trapezoidal profile 
s: S-curve profile 
r: Relative motion  
a: Absolute motion 

 
 

 

 

 

 

 

 

 

 



YA7233-0/6E 

- 48 - 

4.1.6 Circular Interpolation for Two Axes 
 
Any 2 of the 4 axes of PPCIe-8443 can perform a circular interpolation. As in the example below, the 
circular interpolation means X and Y (if axis 0 and 1 are selected, and are assigned to be X and Y 
respectively) axis simultaneous start from the initial point, (0, 0) and stop at the end point, (1800, 600). The 
path between them is an arc, and the max velocity, MaxVel, is the tangent speed. 

 
Example: 
_8443_start_a_arc_xy (0/*card No*/, 1000,0/*center X*/, 0/*center Y*/, 1800.0/* End X */, 
600.0/*End Y */ ,1000.0/* MaxVel */) 
 

 

 

Center
(1000,0)

(1800,600)

(0,0) X

Y

 
To specify a circular interpolation path, the following parameters must be clearly defined: 
 
Center point:  The coordinate of the center of arc (in absolute mode) or the off_set distance to the center 

of arc (in relative mode) 
End point:  The coordinate of end point of the arc (in absolute mode) or the off_set distance to center 

of the arc (in relative mode) 
Direction:  The moving direction, either CW or CCW. 
 
It is not necessary to set the radius or the angle of arc since the information above provides enough 
constrains. The arc motion stopped when either of the 2 axes reaches the end point. 
 
The final point can be set out of the path of arc; however, if the final point is in the location of the shadowed 
areas in the following graph, it will run circularly without stopping. 
 

 

 
 

 



YA7233-0/6E 

- 49 - 

The command precision of circular interpolation is as shown below. The precision range is at radius ± 1/2 
pulse. 
 

 
 

There are two groups of functions that provide 2 axes circular interpolation.  
1. The first group is to divide the 4 axes into XY (axis 0 & axis 1) and ZU (axis 2 & axis 3). By calling these 

functions, the target axes are already assigned. 
_8443_start_r_arc_xy(), _8443_start_r_ arc _zu(), 
_8443_start_a_ arc _xy(), _8443_start_a_ arc _zu(), 
: Refer to section 6.8 

 
2. The second group allows you to freely assign any 2 target axes. 

_8443_start_r_arc2(),_8443_start_a_arc2(), 
: Refer to section 6.8 

 

 
4.1.7 Circular Interpolation with Acceleration / Deceleration Time 
 
In section 4.1.6, circular interpolations without acceleration and deceleration parameters are explained. You 
can perform neither Trapezoidal nor S-curve speed profile during the operations. However, sometimes you 
need this kind of speed profile to make a machine run smoothly even in a circular interpolation mode. 
PPCIe-8443 has another group of circular interpolation functions to perform the speed profile. When you 
use, for example, axis 2 and axis 3 to perform a circular interpolation with Trapezoidal speed profile, you 
can use the function _8443_start_tr_arc_zu(). For the full list of these functions, please refer to section 6.8. 
 

 

 
 

Tlacc: Linear acceleration section  
Tsacc: S-curve acceleration section  

Speed 
(pps) 

Tlacc 

Tsacc Tsacc 
Time 

Tsacc 



YA7233-0/6E 

- 50 - 

4.1.8 Helical Interpolation 
 
In PPCIe-8443, helical interpolation operation functions are equipped. The operation can be done by the 
“circular interpolation with U axis synchronization”, which is a feature of PCL6046 chip. 
 
By using the functions, for example, a helical motion in which the Z axis moves upward in synchronization 
with arc motion, and a tangential interpolation operation for controlling the angle of the Z axis in 
synchronization with circular motions can be performed. Refer to "6.9 helical interpolation operation" for 
function format. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Helical motion 

Z axis moves upward in 
synchronization with arc 
motion.  

Tangent interpolation operation 

Circular interpolation and synchronization 
of Z axis angle.  
 

Example) when maintaining the cutter at a 
certain angle with respect to the 
circular arc tangent 



YA7233-0/6E 

- 51 - 

4.1.9 The Relationship between Velocity and Acceleration Time 
 
The maximum velocity parameter of a motion has the minimum value of an acceleration time eventually. It 
means that there is a range to set in acceleration time to reach the required velocity value. If you want to set 
a small acceleration time, you must increase the maximum velocity value to match your requirement. We 
provide one function for doing that.  
_8443_fix_speed_range(). This function can raise the maximum velocity value with a smaller acceleration 
time. However, it won’t affect the actual motion velocity.  
For example: the acceleration from 0 velocity to 5000 (pps) velocity in 1ms is not possible in the normal 
setting. But if you use the function with a higher velocity setting before the motion, the operation will be 
possible. The program will be like this: 
 
_8443_fix_speed_range(AxisNo,OverVelocity); 
_8443_start_tr_move(AxisNo,5000,0,5000,0.001,0.001); 
 

 Velocity

Time

MaxV1

MaxV2

MaxV3

MaxV4

MiniT1

MiniT2

MiniT3

MiniT4
 

 
How to decide the optimized value of OverVelocity” in the _8443_fix_speed_range() function? We 
provide a function to calculate: _8443_verify_speed(). The input value of this function is the start 
velocity, the maximum velocity, and the over velocity in motion command. The output value will be the 
minimum and the maximum value of the acceleration time. For example, let’s see the original 
acceleration range of this command: 

_8443_start_tr_move(AxisNo,5000,0,5000,0.001,0.001); 
You can try this function to obtain the limit values: 

_8443_verify_speed(0,5000,&minAccT, &maxAccT,5000); 
As the result, the value of minAccT will be 0.0267 sec and maxAccT will be 873.587 sec. This 
minimum acceleration time does not match your requirements, so you must use over speed value to 
do that. 
If you use over speed as 20000, 

_8443_verify_speed(0,5000,&minAccT, &maxAccT,20000); 
The value of minAccT will be 0.00666 sec and maxAccT will be 218.387 sec. This minimum 
acceleration time still does not match the requirements. If we use over speed as 140000, 

_8443_verify_speed(0,5000,&minAccT, &maxAccT,140000); 
The value of minAccT will be 0.000948 sec and maxAccT will be 31.08 sec. This minimum 
acceleration time does match the requirements, and the motion command will be like: 

_8443_fix_speed_range(AxisNo,140000); 
_8443_start_tr_move(AxisNo,5000,0,5000,0.001,0.001); 

 
Note 1) The return value of _8443_verify_speed() function is the minimum velocity of your motion 

command, and it is not always equal to your start velocity setting. In the above example, the 
set value of the start velocity is 0 pps, but it is 3 pps in the actual operation. 

 

 

Time 

Velocity 



YA7233-0/6E 

- 52 - 

Note 2) The velocity range setting fixed by _8443_fix_speed_range() function, can be disabled by 
_8443_unfix_speed_range() function. 

 
Note 3) Do not to use the over speed unless you actually need it. Please be aware that increasing 

the velocity range setting will result in coarse resolution in velocity setting. . 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Example:  
Target profile: MaxV2 
Target acceleration time: Target T 
 
The minimum acceleration time to MaxV2 (MiniT2) is longer than the target value due to the (MaxV, MiniT) 
relationship  
 
So we have to change the (MaxV and MiniT) relationship to a higher setting (MaxV1, MiniT1). Finally, the 
command for the target operation would be as follows: 
 

_8443_fix_speed_range(AxisNo, MaxV1); 
_8443_start_tr_move(AxisNo,Distance,0,MaxV2,TargetT,Target T); 

 
Related functions:  

_8443_fix_speed_range(), 
_8443_unfix_speed_range(),_8443_verify_speed() 
 

: Refer to section 6.5 
 

Time 

Velocity 

Target T 
MiniT1 

MiniT2 

MaxV1 

MaxV2 



YA7233-0/6E 

- 53 - 

4.1.10 Continuous Operation 
 
PPCIe-8443 allows you to perform continuous operations. Both single axis operation (section 4.1.3: 
Trapezoidal, section 4.1.4: S-curve) and multi-axis interpolation operation (4.1.5: linear interpolation, 4.1.6: 
circular interpolation) can be extended continuously. 
For example, if you call the follow function to perform a single axis preset motion: 
_8443_start_ta_move(0,50000.0,100.0,30000.0,0.1,0.0) 
 
It will execute the axis “0” to move to position “50000.0”. Before the axis arrives at the target position, you 
can call the second positioning operation: 
_8443_start_tr_move(0,20000.0,100.0,30000.0,0.0,0.2) 
 
The second function call will not affect the first one. Actually it will be executed and be written in the 
pre-register of PPCIe-8443. After the first operation is finished, PPCIe-8443 will continue the second 
operation per the pre-register value. No interval time exists between these two operations, and pulse trains 
will be continuously generated at the instant of position “50000.0”.  
The theory of continuous operations is described below: 
 
Theory of continuous motion 
The following diagram shows the register data flow of PPCIe-8443. 

 

Host 
Program

Running 
Register

Next Command loading

Pre-register empty 
interrupt

Pre-reg 
1

Pre-reg 
2

 
Step 0: All Register and Pre-Register is empty. 
 
Step 1: The first operation is executed and CPU writes corresponding values into the pre-register 2. 

_8443_start_ta_move(0,50000.0,100.0,30000.0,0.1,0.0) 
 
Step 2: Since the pre-register1 and the register are empty, the data in the pre-register 2 can be moved to 

the register automatically and executed instantly by PCL6046. 
 
Step 3: The second function is called, and CPU writes the corresponding values into the 

  
_8443_start_tr_move(0,20000.0,100.0,30000.0,0.0,0.2) 

 
Step 4: Since the pre-register1 is empty, the data in the pre-register 2 is moved to the pre-register 1 

automatically and is wait to be executed. 
 
Step 5: Now you can execute the 3rd function, and it will be stored in the pre- register 2. 
 

Pre-register writable interrupt 



YA7233-0/6E 

- 54 - 

Step 6: When the first function is finished, the register becomes empty and the data in the pre-register 1 is 
moved to the register, and executed instantly by PCL6046.  
Then the data in pre-register2 is moved to the pre-register 1. 

 
Step 7: PCL6046 will inform CPU by interrupt when the operations are completed. Then you can write 

 the 4th operation into Pre-Register 2. 
 
Procedures to perform a continuous operation: 
The following shows the procedures for a continuous operation.  
Step 1: Enable the interrupt operation by _8443_int_contol() and _8443_int_enable(). 
Step 2: Set bit “2” of INT factor to “True” by _8443_set_int_factor(). 
Step 3: Set the “conti_logic” to “1” by: _8443_set_continuous_move(). 

(Note: if the all operations are in relative mode, this function can be ignored.) 
Step 4: Call the first three operation functions. 
Step 5: Wait for EVENTof pre-register empty. 
Step 6: Call the 4th operation function. 
Step 7: Wait for EVENT of pre- register empty. 
Step 8: Call the 5th operation function.  

(Repeat Step 7 and 8…Continue… 
Step n: Call the last operation function and wait for all operations to be completed. 
(Note: Another way to detect completion of motion is by polling. You may constantly check the buffer status 

by _8443_check_continuous_buffer(). 
 
 
Restrictions on continuous operation: 
The following are restrictions and suggestions for continuous operations: 
 

1) While the pre-register is not empty, you cannot execute further operations. Otherwise, the new 
  operation will be overwritten over the previous operation in the pre-register 2. 

2) To smoothly continue two operations, the end velocity of previous operation and the starting 
velocity of the following operation need to be set the same. The easiest way is to set the  
deceleration/acceleration time to be ‘0’. 

 
 
Example: 
First operation:   _8443_start_tr_move_XY(0,1000,0,0,5000,0.2,0.0) 
                 (Start a relative 2-axis linear interpolation, X distance=1000, Y distance= 0,  

Start vel = 0, Max vel = 5000, Tacc = 0.2, Tdec = 0) 
Second operation: _8443_start_r_arc_xy(0,0,500,500,500,1,5000); 

(Start a relative 2 axis circular interpolation, Center X distance=0,  
Center Y distance= 500, End X distance = 500, End Y distance = 500. Max vel = 5000.  
Quarter CCW circle, Velocity = 5000) 

Third operation:   _8443_start_tr_move_XY(0,0,1000,0,5000,0.0, 0.2) 
(Start a relative 2-axis linear interpolation, X distance=0, Y distance= 1000 , Start vel = 0, 
Max vel = 5000, Tacc = 0.0,Tdec = 0.2) 

 

 

 



YA7233-0/6E 

- 55 - 

 

Dist = 1000

R = 500

Dist = 1000

(1)

(2)

(3)

 
 

Explanation of example: 
While these three operations are being executed sequentially without waiting, the 1st operation is written in 
the Register and is executed instantly; the 2nd operation is written in the Pre- Register 1 and is waiting for 
completion of the 1st operation; the 3rd operation is written in the Pre-Register 2 and is waiting for 
completion of the 2nd operation.. Since the 1st operation has ‘0’ deceleration time and the 2nd operation is 
on an arc at the constant velocity, which is the same as the max velocity of the 1st operation, the 
PPCIe-8443 will output constant frequency at intersection between them. 
 

1. Continuous operations between different axes cannot be performed since each axis has its own 
register and pre-register system. 

2. Continuous motion between different numbers of axes is not allowed. For example: 
_8443_start_tr_move() cannot be followed by _8443_start_ta_move_XY() , or Vice versa, 
because these two functions belong to single axis and 2-axis mode individually. 

3. It is possible to perform 3 axes or 4 axes continuous linear interpolation, but the speed continuity is 
impossible to achieve. 

4. If any absolute mode is used during continuous operation, make sure that the 
_8443_reset_target_pos() is executed at least once after the home return operation(please refer 
to 4.1.11: Home return operation) 

 
Example of continuous operation 
 
1. Single axes continuous operation: Changing velocity at preset point. 

 

 

 
Velocity

Time
Tacc = 0Tdec=0

(1)
(2)

(3)

A. B.

 
 
This example demonstrates how to use continuous operation function to achieve the velocity changed 
at the pre-set point. The 1st motion (ta) moves an axis to point A, with Tdec =0, and then the 2nd 
continues instantly. The starting velocity of (2) is the same as the max velocity of (1), so that the 
velocity continuously exists at A. At point B. the Tacc of (3) is set to be 0, so the velocity continuity is 
also realized.  

 



YA7233-0/6E 

- 56 - 

2. 2-axis continuous interpolation : 
 

 

 
 

This example demonstrates how to use continuous operation function to achieve 2-axis continuous 
interpolation. In this application, the velocity continuity is the key concern. Please refer to the example 
in the previous page. 
 

 
Related functions: 
_8443_set_continuous_move(),_8443_check_continuous_buffer() 
: Refer to section 6.18 
 



YA7233-0/6E 

- 57 - 

4.1.11 Home Return Operation (Origin Return)  
 
In this operation, you can control the home return sequence by writing the command _8443_home_move(). 
There are 13 Home modes provided by PPCIe-8443. The “home_mode” of function 
_8443_set_home_config() is used to select the mode. 
 
After the home return operation is completed, all of the position related information will be reset to “0”. In 
PPCIe-8443, there are 4 counters and 1 software-maintained position recorder.  
 

Counter / Recorder Description 
Command position counter To count the number of pulses output 
Feedback position counter To count the number of pulse input 
Position error counter To count the error between command and feedback pulse number. 
General-Purpose counter: General purpose (Select from below) 

Command output pulse, Feedback input pulse, Manual pulser, 
Reference CLK/2. 

Target position recorder To record the target position 
 
(Please refer to section 4.4 for more detail explanation for the position counters) 
 
Once a Home return operation is completed, the first four counters will be cleared to “0” automatically. 
However the target position recorder will not cleared automatically since it is maintained by software. It is 
necessary to manually set the target position to “0” by calling the function: _8443_reset_target_pos(), so 
that, all of the positions information will be “0”. 
 
The following figures show the various Home modes and the reset points, when the counter will be cleared 
to “0”. 
 (Please refer to section 4.4 for more detail explanation about position counters) 
 
home_mode = 0: ORG    Slow down    Stop 
 
 SD(Ramp-down signal) is disabled  

 
ORG

EL

Case 1
Case 2
Case 3

Reset

 
 
 SD(Ramp-down signal) is enabled  

 

SD
EL

Case 1
Case 2
Case 3

ORG

Reset

 
 



YA7233-0/6E 

- 58 - 

home_mode = 1: ORG   Slow down    Stop at end of ORG 

 
ORG

EL

Case 1
Case 2
Case 3

Reset

 
 

home_mode = 2: ORG    Slow down    Stop on EZ signal  

 

EZ

EL

Case 1

Case 2

Case 3

ORG

Case 4

Reset

Reset

(EZ_Count = 1)

(EZ_Count = 2)

 
 

home_mode = 3: ORG   EZ    Slow down    Stop 

 

EZ

EL

Case 1

Case 2

Case 3

ORG

Case 4

Reset Reset

(EZ_Count = 1)

(EZ_Count = 2)

 
 

 

 



YA7233-0/6E 

- 59 - 

home_mode = 4: ORG    Slow down    Go back at FA speed    EZ    Stop 

 

EZ

EL

Case 1

Case 2

Case 3

ORG

Case 4

Reset

Reset

(EZ_Count = 1)

(EZ_Count = 0)
FA

FA

 
 

home_mode = 5: ORG    Slow down    Go back    Accelerate to max velocity    EZ    
Slow down    Stop 

 

EZ
EL

Case 1

Case 2

Case 3

ORG

Case 4

Reset

Reset

(EZD=1)

(EZD=0)

 
 

home_mode = 6: EL only 

 
EL

Case 1
Reset

 
 

FA= Search speed (half of FL) 
 



YA7233-0/6E 

- 60 - 

home_mode = 7: EL    Go back    Stop on EZ signal 

 
EZ

EL

Case 1

Reset

(EZ_Count = 1)

FA

 
 

home_mode = 8: EL    Go back    Accelerate to max velocity    EZ   Slow down   Stop  

 
EZ

EL

Case 1
Reset

(EZD=1)

 
 

home_mode = 9: ORG    Slow down    Go back    Stop at beginning edge of ORG 

 

EL

Case 1

Case 2

Case 3

ORG

Reset

 
 

FA= Search speed (half of FL) 
 



YA7233-0/6E 

- 61 - 

home_mode = 10: ORG    EZ    Slow down    Go back    Stop at beginning edge of EZ 

 

EZ
EL

Case 1

Case 2

Case 3

ORG

Reset

(EZ_Count = 1)

 
 
home_mode = 11: ORG    Slow down    Go back (backward)    Accelerate to max velocity    
EZ    Slow down    Go back (forward)    Stop at beginning edge of EZ 

 

EZ

EL

Case 1

Case 2

Case 3

ORG

Case 4

Reset

Reset

(EZ_Count = 1)

(EZ_Count = 0)

 
 

home_mode = 12: EL    Stop    Go back (backward)    Accelerate to max velocity    EZ    
Slow down    Go back again (forward)    Stop at beginning edge of EZ 

 EZ

EL

Case 1

Reset

(EZ_Count = 1)

 



YA7233-0/6E 

- 62 - 

Origin search function example (Home mode = 1) 

 

Start/Direction ( - )

-ELORG+EL
 

 
FL = Starting velocity  
FH = Max velocity (The sign shows the direction) 
FA = Search speed (Half of the FL) 
 

 

 ORG Offset

 
Operation steps 
1. Origin searching start (−) 
2. Slow down at − EL and reverse moving (+) 
3. Slow down at ORG 
4. Escape from ORG operation (+) according to ORGOffset 
5. Start searching again (−) 
6. Slow down at ORG, escape from ORG (+) at searching speed.  
7. After escape from ORG. search ORG at searching speed again (−).  
 
Related functions: 
_8443_set_home_config(),_8443_home_move(),_8443_home_search(),_8443_auto_home_search() 
: Refer to section 6.10  
 



YA7233-0/6E 

- 63 - 

4.1.12 Manual pulser operation  
 
As for a manual operation device, you may use a manual pulser such as a rotary encoder. The 
PPCIe-8443 can input signals from a pulser and output corresponding pulses from the OUT and DIR 
terminals. It allows you to simplify the external circuit and control the present position of axis.  
This mode is effective when  
_8443_pulser_vmove(), _8443_pulser_pmove()  
or _8443_pulser_home_move() command has been called.  
To stop, by _8443_sd_stop() or _8443_emg_stop() command or by the completion of the operation. 
The PPCIe-8443 receives positive direction and negative direction pulses (CW / CCW) or 90 degrees 
phase difference signals (A / B phase) from a pulser at PA and PB terminals. To set the input signal 
modes of a pulser, use _8443_set_pulser_iptmode() function. The 90 degree phase difference signals 
can be input through multiplication by 1, 2 or 4. If the A / B phase input mode is selected, the PA and 
PB signals should be with 90 degree phase shifted, and the position counting will increase when the 
PA signal is leading the PB signal by 90 degree phase. 

 
Related functions: 

_8443_pulser_vmove(),_8443_pulser_pmove(),_8443_pulser_home_move(), 
_8443_set_pulser_iptmode() :Refer to section 6.11 
 

 
4.1.13 Timer Mode 

 
In this mode, you can delay the execution of program by a specified delay time (ms). 
For example._8443_delay_time(0, 100); after executing this command, there will be 100 ms delay in 
executing the next command. 
 

Relative Functions: 
_8443_delay_time(): Refer to Section 6.1 
 

 
4.1.14 Pulser Interpolation 
 
You can use a pulser for interpolation of motion (any of two axes on linear interpolation or any of two axes 
on circular interpolation). This mode can only work under incremental mode. Refer to the following diagram. 
When one of the axes function is used as a dummy axis, the axis cannot be used for interpolation. For 
example, when No. 3 axis is used as dummy axis, then any two axes from No.0 to No.2 axis can be used as 
interpolation axes. 
 

OUT3
DIR3

PA
PB

CN2 P1

 
 

 
Any of two axes for linear interpolation 
Referring to the above diagram, by executing _8443_pulser_r_line2() command, it is possible to execute 
linear interpolation motion. The axes used for interpolation can be set by AxisArray parameter. 
_8443_pulser_r_line2(): please refer to Section 6.11 
 
Any of two axes for circular interpolation 
Referring to the above diagram, by executing _8443_pulser_r_arc2() command, it is possible to execute 
circular interpolation motion. The axes used for interpolation can be set by AxisArray parameter. 
_8443_pulser_r_line2(): please refer to Section 6.11 



YA7233-0/6E 

- 64 - 

4.2 The Motor Driver Interface 
 
PPCIe-8443 provides the INP, ALM, ERC, SVON, and RDY signals for the servomotor driver’s control 
interface. The INP and ALM are used for feedback of a servo driver’s status. The ERC is used to reset 
a servo driver’s deviation counter under special conditions. The SVON is a general purpose output 
signal, and RDY is a general-purpose input signal. The meaning of “general purpose” is that the 
processing of the signals is not build-in procedure of hardware. The hardware can process INP, ALM, 
and ERC signals according to the pre-defined rule. For example, when receiving ALM signal, 
PPCIe-8443 will stop or decelerate to stop output pulses automatically. However, SVON and RDY are 
not the case; they actually act like common I/O. 
 

4.2.1 INP 
 
The processing of INP signal is a hardware build-in procedure, and it is designed to cooperate with the 
in-position signal of servomotor driver. 
Usually, servomotor driver with pulse train input has a deviation (position error) counter to detect the 
deviation between the input pulse command and feedback counter. The driver controls the motion of 
servomotor to minimize the deviation until it becomes 0. Theoretically, the servomotor operates with 
some time delay from command pulses. Accordingly, when the pulse generator stops outputting 
pulses, the servomotor does not stop but keep running until the deviation counter become zero. Then, 
the servo driver sends out the in-position signal (INP) to the pulse generator to indicate the motor 
stops running. 

 
Usually, PPCIe-8443 stops outputting pulses upon completion of outputting designated pulses. But by 
setting parameter inp_enable in _8443_set_inp() function, you can delay the completion of motion to 
the time when the INP signal is turned on, ie, the motor arrives the target position. Status of 
_8443_motion_done() and INT signal are also delayed. That is, when performing under position 
control mode, the completion of _8443_start_ta_move(), _8443_start_sr_move(), etc., is delayed 
until INP signal is turned ON. The in-position function can be enable or disable, and the input logic 
polarity is also programmable by parameter “inp_logic” of _8443_set_inp(). The INP signal status 
can be monitored by software function: _8443_get_io_status(). 
 
Relative Functions: 
_8443_set_inp() : Refer to section 6.13 
_8443_get_io_status() : Refer to section 6.14 
_8443_motion_done() : Refer to section 6.12 
 

4.2.2 ALM 
 

The processing of ALM signal is a hardware build-in procedure, and it is designed to cooperate with 
the alarm signal of a servomotor driver. The ALM signal is an output from a servomotor driver. Usually, 
it is designed to inform something wrong with the driver or the motor. 
The ALM terminal receives the alarm signal output from a servo driver. The signal immediately stops 
PPCIe-8443 generating pulses or stops after deceleration. If the ALM signal is in the ON status at the 
start, PPCIe-8443 outputs the INT signal without generating any command pulses. The ALM signal 
may be a pulse signal, of which the shortest width is a time length of 5 µs. 
You can change the input logic of ALM by setting the parameter “alm_logic” of _8443_set_alm 
function and the stop mode by “alm_mode”. Whether or not PPCIe-8443 is generating pulses, the 
ALM signal lets it output the INT signal. The ALM status can be monitored by software function: 
_8443_get_io_status(). The ALM signal can generate IRQ if the interrupt operation is enabled 
(Please refer to section 4.7). 

 
Relative Functions: 
_8443_set_alm() : Refer to section 6.13 
_8443_get_io_status() : Refer to section 6.14 



YA7233-0/6E 

- 65 - 

4.2.3 ERC 
 
The ERC signal is an output from PPCIe-8443. The processing of ERC signal is a hardware build-in 
procedure, and it is designed to cooperate with the deviation counter clear signal of a servomotor driver. 
The deviation counter clear signal is inserted in the following three situations: 
 
1) Home return is completed.  
2) Error type signals such as End-limit switch, Alarm signal, or Emergency signal is turned on during  

operations. 
3) Emergency stop command is issued by software.  
 
Since a servomotor operates with some delay from pulses generated from PPCIe-8443, it keeps moving 
until the deviation counter of the driver down to zero even if PPCIe-8443 stops outputting pulses because of 
the EL signal or the completion of home return. The ERC signal allows you to immediately stop the 
servomotor by resetting the deviation counter to zero. The ERC signal is output as a one-shot signal. The 
pulse width is a time length defined by function call _8443_set_erc(). The ERC signal will be automatically 
output when ±EL signal or ALM signal is turned on to immediately stop the servomotor. 
 
Relative Functions: 
_8443_set_erc() : Refer to section 6.13 
 
 
4.2.4 SVON and RDY 
 
In PPCIe-8443, each axis is equipped with SVON and RDY, which are general-purpose output and input 
channels, respectively. Usually, SVON is useful to cooperate with servomotor drivers as Servo ON 
command, and RDY to receive the Servo Ready signal from servomotor drivers. That is the reason why 
they are named as SVON and RDY. There is no build-in procedure for SVON and RDY. 
The SVON signals are controlled by software function: _8443_set_servo().  
RDY terminals are dedicated for digital input use.  
The status of the signal can be monitored by software function _8443_get_io_status(). 
 

 
Related functions:  
_8443_set_servo():   Refer to section 6.13 
_8443_get_io_status():  Refer to section 6.14 
 
 

4.3 Mechanical Input Interface and I/O Status 
 
In this section, the following I/O signal operations are described:  

- SD / PCS   : Ramping down and Position change sensor 
- ± EL : End-limit sensor 
- ORG : Origin position 
- EMG : Emergency stop 

 
In any operation mode, if an ± EL signal is active during a moving condition, it will cause PPCIe-8443 
to stop output pulses automatically. If an SD signal is active during a moving condition, it will cause 
PPCIe-8443 to decelerate. If operating in the multi-axes mode, it automatically applies to the all 
related axes. 

 
 



YA7233-0/6E 

- 66 - 

4.3.1 SD / PCS 
 

SD / PCS terminal for each axis is an input channel and is selectable to connect into SD (ramping down) or 
Position Change Signal (PCS). It can be configured by function call _8443_set_sd_pin(). (The default 
setting is SD.) 
When SD / PCS terminal is directed to SD, PCS signal will be kept in the low level. While PCS is selected, 
SD signal will be kept in the low level. You need to pay attention to the logic and enable/disable attributes 
for unused signals. 
 
The ramping-down signals are used to make the output pulse (OUT and DIR) decelerate and then keep it 
on the StrVel while it is active. The StrVel is usually smaller than MaxVel, so this signal is very useful to 
protect the machine when moving at high speed toward the mechanical limit. SD signal is effective for both 
positive and negative directions. 
The ramping-down function can be enabled or disabled by the software function: _8443_set_sd().  
The input logic polarity, level operation mode, or latched input mode can also be set by this function. The 
signals status can be monitored by _8443_get_io_status(). 
 
The PCS signal is used to define the starting point of a preset (tr / sr) motion.  
The logic of PCS is configurable by _8443_set_pcs_logic() 
Refer to the following chart:  
 

 

 

 

 

 

 

 

 

 
Related functions: 
_8443_set_sd_pin(),_8443_set_pcs_logic(): Refer to section 6.6  
_8443_set_sd(): Refer to section 6.13 
_8443_get_io_status(): Refer to section 6.14  
 

PCS 

Velocity Time 
Area = 1000 pulse 

Start_tr_move 
(Dist = 1000) 



YA7233-0/6E 

- 67 - 

4.3.2 EL 
 
The end-limit signals are used to stop the control output signals (OUT and DIR) when the end-limit is active. 
There are two possible stop modes; one is “stop immediately”, and the other is “decelerate to StrVel and 
stop”. To select the mode: _8443_set_el(). 
PEL signal indicates end-limit in positive (plus) direction while MEL signal indicates end-limit in negative 
(minus) direction. When the pulse signals (OUT and DIR) are output toward positive direction, the pulse 
train will be immediately stopped when the PEL signal is inserted. MEL signal is meaningless in this case, 
and vice versa. When the PEL is inserted, only the negative (minus) direction output pulse can be 
generated to move the motor in negative (minus) direction. EL signal can generate IRQ if the interrupt 
operation is enabled. (Please refer to section 4.7.) 
You can use either ‘a’ contact switch or ‘b’ contact switch by setting the dip switch SW2. PPCIe-8443 is 
delivered from the factory with all bits of SW2 set to ON. 
The signal status can be monitored by software function: _8443_get_io_status(). 
 
Related functions: 
_8443_set_el(): Refer to section 6.13 
_8443_get_io_status(): Refer to section 6.14 
 
 
4.3.3 ORG 
 
ORG signal is used when a motion controller is operated in the Home mode. There are 13 Home modes 
(please refer to section 4.1.11), and you can select one of them by setting “home_mode” argument in 
software function: _8443_set_home_config(). The logic polarity of ORG signal is selectable by this 
software function. 
After setting the configuration of Home mode by _8443_set_home_config(), the home return operation 
can be performed by _8443_home_move() function. 
 
Relative Functions: 
_8443_set_home_config(), _8443_home_move():  Refer to section 6.10 
 
 
4.3.4 EMG 
 
PPCIe-8443 provides a global digital input for emergency situation. Once the input is turned on, 
PPCIe-8443 will stop all axes’ operations immediately to prevent damages in the machine. Usually, you 
should connect it with the emergency stop button in the machine. You cannot use deceleration stop for 
emergency stop. 
 
 

 



YA7233-0/6E 

- 68 - 

4.4 Counters  
 

PPCIe-8443 provides 4 counters for each axis. 
Counter Description 

Command position counter To count the number of pulse output 
Feedback position counter To count the feedback input position counter 
Position error counter To count the error (deviation) between command pulse and feedback 

pulse number 
General purpose counter General purpose (Select from below) 

Pulse output, feedback pulse, manual pulser, or CLK / 2. 
 
Also, the target position recorder (a software-maintained position recorder) will be discussed in this 
section. . 
 
4.4.1 Command Position Counter 
 
The command position counter is a 32-bits binary up / down counter, and the input source is an output 
pulse from PPCIe-8443, thus, it provide as exact information of the current command position.  
 
Note: The command position is different from the target position. The command position increases or 

decreases per the pulse output while the target position changes only when a new motion command 
is executed. The target position is recorded by software, and need to be manually reset after the 
home return operation is completed. 
The command position counter will be clear to “0” automatically after the home return operation is 
completed.  

Besides, the function call, _8443_set_command(), can be executed in any time to set a new command 
position value.  
To read the current command position, use the function: _8443_get_command(). 
 
Relative Functions: 
_8443_set_command(), _8443_get_command( ): Refer to section 6.16 
 

 
4.4.2 Feedback Position Counter 
 
PPCIe-8443 has a 32-bits binary up / down counter for managing the present position feedback for each 
axis. The counter counts signals input from EA and EB terminals. 
It can accept 2 kinds of pulse input: (1): plus and minus pulses input (CW/CCW mode); (2): 90° phase 
difference signals (A / B phase mode). 90° phase difference signals can be selected to be multiplied by a 
factor of 1, 2 or 4. The 4 x A / B phase mode is the most commonly used for incremental encoder input. For 
example, if a rotary encoder has 2000 pulses per phase (A or B phase), then the value read from the 
counter will be 8000 pulses per turn or − 8000 pulses per turn depending on its turning direction. These 
input modes can be selected by _8443_set_pls_iptmode() function. 
 
In the case of applications without implementing an encoder (without any feedback), it is possible to set the 
feedback counter source to be the output pulse, just as the command counter. Thus, the feedback counter 
and the command counter will show the same value. To enable the counters counting pulses input from 
pulse output, set “Src” parameter of software function _8443_set_feedback_src() to “1”. 
 
Plus and minus pulses input mode (CW/CCW Pulse input mode) 
The pattern of pulses in this mode is the same as Dual pulse output mode in Pulse command output 
section, and the input terminals are EA and EB. 
In this mode, a pulse from EA causes the counter to count up (+), whereas EB causes the counter to count 
down (−). 
 

 

 



YA7233-0/6E 

- 69 - 

90 degree phase difference signals input mode (A / B phase Mode) 
In this mode, EA signal is 90 degree phase leading or lagging in comparison with EB signal. “Lead” or “lag” 
of phase difference between two signals is determined by the turning direction of motors. The up / down 
counter counts up when the phase of EA signal leads the phase of EB signal.  
The following diagram shows the waveform: 
 

 

Positive Direction

Negative Direction

EA

EA

EB

EB

 
 
The index inputs (EZ) signals of encoders are used as the “ZERO” index. This signal is common in most of 
the rotational motors. EZ can be used to define the absolute position of the mechanism. 
 
The input logic polarity of the EZ signals is programmable by software function _8443_set_home_config(). 
The EZ signals status of the four axis can be monitored by _8443_get_io_status(). 
The feedback position counter will be cleared to “0” automatically after home return operation is completed.  
Besides, the function call, _8443_set_position(), can be executed in any time to set a new command 
position value.  
To read the current command position, use function call: _8443_get_position(). 
 
Related functions:  
_8443_set_pls_iptmode(),_8443_set_feedback_src(): Refer to section 6.4   
_8443_set_position(),_8443_get_position(): Refer to section 6.16 
_8443_set_home_config(): Refer to section 6.10 
 
 
4.4.3 Position Error Counter 
 
The position error counter is used to calculate the error between command position and feedback position. 
The working theory is that it adds one count when PPCIe-8443 output one command pulse and subtracts 
one count when PPCIe-8443 receives one feedback pulse (from EA, EB). It is very useful to detect the 
step-losing situation (out of step) of stepping motors when an encoder is applied. 
Since the position error counter automatically calculate the difference between pulse output and pulse 
feedback, it is inevitable to get error if the motion ratio is not equal to “1”. 
 
To get the position error, use the function call: _8443_get_error_counter().  
To reset the position error counter, use the function call: _8443_reset_error_counter().  
(The position error counter will be automatically cleared to “0” after an home return operation is completed.) 
 
Related functions:  
_8443_get_error_counter(),_8443_reset_error_counter(): Refer to section 6.16 
 

Count up  
 

Count down 



YA7233-0/6E 

- 70 - 

4.4.4 General Purpose Counter 
 
Refer to the table below for the counter input functions of the general purpose counter. 
 
The default source of a general purpose counter is a manual pulser. (Please refer to section 4.1.12 for 
detail explanation of manual pulser.)  
To set other source, use the function call: _8443_set_general_counter(). 
To get the counter value, use the function call: _8443_get_general_counter(). 
 
Relative Function: 
_8443_set_general_counter(), _8443_get_general_counter() :  Refer to section 6.16. 
 

 

Counter Description Counter Source Function Function description 

Command 
position 

To count the 
number of pulses 
output 

Pulses output 
_8443_set_command Set a new value for 

command position 

_8443_get_command Read current command 
position 

Feedback 
position 

To count the 
number of pulses 
input 

EA/EB or Pulse 
output 

_8443_set_pls_iptmode Select the input modes of 
EA/EB 

_8443_set_feedback_src Set the counters input 
source 

_8443_set_position Set a new value for 
feedback position 

_8443_get_position Read current feedback 
position 

Position 
error 

To count the 
error between 
command and 
feedback pulse 

EA/EB and Pulse 
output 

_8443_get_error_counter To get the position error 

_8443_reset_error_counter To reset the position error 
counter 

General 
purpose 

General purpose 
counter 

Pulse output 
EA/EB  
Manual pulser 
CLK/2 

_8443_set_general_counter Set a new counter value 

_8443_get_general_counter Read current counter value 

 

 
4.4.5 Target Position Recorder 

 
The target position recorder is very useful for providing target position information, which is managed by the 
software. For example, if PPCIe-8443 is operating in a continuous operation with the absolute mode, the 
target position will let the next absolute operation knows the target position of the previous operation. 

 
It is very important to know that the target position recorder is handled by the software. Please note the 
following:   
1) Every time a new motion command is executed, the displacement is added automatically into the target 

position recorder.  
2) To make sure the correctness of target position recorder, your need to manually maintain it in the 

following two situations by the function call _8443_reset_target_pos(): 
1. After an home return operation is completed 
2. After a new feedback position is set 

 
Related functions: 
_8443_reset_target_pos(): Refer to section 6.16  



YA7233-0/6E 

- 71 - 

4.5 Multiple PPCIe-8443 operation 
 

The software function library supports up to 12 PPCIe-8443 boards, which means up to 48 axes of motors can be 
controlled. Since PPCIe-8443 has a characteristic of Plug-and-Play, you do not have to worry about setting the 
based address and IRQ level of boards. They are automatically assigned by the BIOS of system when booting up. 
You can utilize “PPCIe8443 Utility” to check if the plugged PPCIe-8443 boards are successfully installed and see 
the Base address and IRQ level assigned by BIOS. 
 

One thing to be noticed is to identify the board number of PPCIe-8443 when multiple boards are applied. There 
are two methods to identify the board number. One is automatic setting and the other is setting by the Card ID 
switch (SW1).  
 
Using automatic setting, the number of a PPCIe-8443 board depends on the locations on the PCIe slots. 
Generally, they are numbered in order from the board closer to the PC.  
These card numbers will influence the corresponding axis number on the boards. And the axis number is the 
first argument for most functions called in the library. So it is important to identify the axis number before writing 
application programs.  
 
For manual setting (setting by board ID setting switch (SW 1)), refer to section 2.11 SW 1 board ID selection. 
Correspondence between board number and axis number is as shown in the below table as with automatic 
setting. 
 

Axis No 
Board No Axis 0 Axis 1 Axis 2 Axis 3 

0 0 1 2 3 
1 4 5 6 7 
2 8 9 10 11 
3 12 13 14 15 
4 16 17 18 19 
5 20 21 22 23 
6 24 25 26 27 
7 28 29 30 31 
8 32 33 34 35 
9 36 37 38 39 
10 40 41 42 43 
11 44 45 46 47 

 
If you want to accelerate Axis 2 of board 1 from 0 to 10000 pps in 0.5 sec in the Constant Velocity Mode 
operation, the axis number should be 6, and the code on the program will be as follows: 
 
_8443_start_tv_move(6, // axis number 

0, // starting speed  
10000, // moving maximum speed  
0.5); // acceleration time 
 

Please check the board number (axis number) using PPCIe8443 Utility  before application development. 
For applications to move many axes simultaneously by using multiple PPCIe-8443 boards, you should follow 
the connection diagrams in Section 3.14 to make connections with K1/K2 connectors. Several functions 
described in Section 6.19 may be useful when writing programs. 
 

 

 

 

 

 



YA7233-0/6E 

- 72 - 

4.6 Change Position or Speed On The Fly (Override Function) 
 

The PPCIe-8443 provides powerful position or speed changing function while an axis is moving. Changing 
speed / position on the fly means that the target speed/position can be altered after the operation has 
started. Yet, these functions are not unlimited, so please study carefully all constrains before implementing 
on- the-fly (override) functions. 

 

 
4.6.1 Change Speed On The Fly (Speed Override)  

 

 

 

 

 

 
new_vel 

 

 

 

 

 

 
The change speed on the fly function is applicable in single axis motion only. Both velocity mode operation 
and position mode operation are applicable. The graph above shows the basic operating theory. 
The following functions are related to change speed on the fly function:  
_8443_v_change():      Change speed on the fly(Change MaxVel) 
_8443_cmp_v_change():  Change velocity when general comparator is satisfied  
_8443_sd_stop():  Ramp down to stop 
_8443_emg_stop():  Emergency stop 
_8443_fix_speed_range():  Define the speed range 
_8443_unfix_speed_range():  Release the speed range constrain 
 
 
All the first 4 functions enable speed changes during a single axis operation. 
However,  
_8443_sd_stop() and _8443_emg_stop() only change the axis speed to “0”.  
_8443_fix_speed_range() is necessary to be executed in prior to any _8443_v_change() functions.  
_8443_unfix_speed_range() release the speed range constrained by _8443_fix_speed_range(). 
 
The _8443_cmp_v_change() has almost the same function as _8443_v_change(), except that 
_8443_cmp_v_change() will act only when a general comparator is satisfied. Please refer to section 4.4.4 
for more detail description about general comparators. 

Speed _8443_v_change (axis,new_vel,Tacc) 

The same Accel/Decel slope 

Tacc 

Time 



YA7233-0/6E 

- 73 - 

Next, we will focus on the _8443_v_change(). 
 

Work theory of _8443_v_change(): 
_8443_v_change() function is used to change the MaxVel on the fly. In a normal operation, the axis starts 
at StrVel speed, accelerates to MaxVel, and then keeps at MaxVel until entering deceleration section.  If 
you change the MaxVel, it will force the axis to accelerate or decelerate to a new speed in a period of time 
defined by you. Both Trapezoidal and S-curve profiles are applicable.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Speed change in S-curve operation 

 
Constrains of _8443_v_change(): 
 
1. In single axis preset mode, there must be enough remaining pulses to reach new velocity. If not, the 

_8443_v_change() will return error and keep the velocity unchanged. 
 
Example:  
 
A trapezoidal relative motion is applied: 
_8443_start_tr_move(0,10000,0,1000,0.1,0.1). 
 
It will get axis 0 move for 10000 pulse, and the maximum velocity is 1000 pps. 
 
At 5000 pulse, the _8443_v_change(0,NewVel,Tacc) is applied. 
 

NewVel 
(pps) 

Tacc 
(sec) 

Necessary remaining pulse OK/ Error 
Accel Decel Total 

5000 0.1 300 313 613 OK 
5000 1 3000 3125 6125 Error 

 10000 0.1 550 556 1106 OK 
50000 0.1 2550 2551 5101 Error  

 
In the case that NewVel is 5000 and Tacc is 1 sec, there must be 6125 remaining pulses, and amount 
number of pulses will exceed the target position of 10000. Therefore, an error occurs. 
 
In the case that NewVel is 50000 and Tacc is 0.1 sec, 5101 remaining pulses are needed and amount 
number of pulses will excess the target position 10000. Therefore, an error occurs again. 
 
In other two combinations, speed changes can be executed because there are enough remaining pulses. 
 

 
 

Tacc Tacc 

_8443_v_change 

_8443_sv_move 



YA7233-0/6E 

- 74 - 

2. Please check the board number (axis number) using PPCIe-8443 Utility  before application development. 
You must set the maximum speed by _8443_fix_speed_range() so that the _8443_v_change() can 
work correctly. If not, the MaxVel set by _8443_v_move() or _8443_start_ta_move() becomes 
automatically lower the maximum speed since the maximum speed set by _8443_v_change() cannot 
be reached. . 

 
 

 

With fix_speed_range Without  fix  speed  range

max_vel

max_vel
N o t  S u g g ested

 
 

 
 
3. _ 8443_v_change() function conducted during acceleration or deceleration period is not recommended. 

Although the function may work in most cases, the acceleration and deceleration times cannot be 
guaranteed. 

 

 max_vel max_vel

N o t  S u g g ested

 
 

 

 

 

When setting the speed range 
including the target speed in 
advance with fix_speed_range 

When fix_speed_range setting is not done in advance  

Not recommended 

Cannot set the new speed exceeding 
the speed range setting (max_vel)  



YA7233-0/6E 

- 75 - 

Example: 
There are three speed change sensors during an absolute operation for 200,000 pulses.  
The initial maximum speed is 10,000 pps. It will be changed to 25,000 pps if Sensor 1 is touched, it will be 
changed to 50,000 pps if Sensor 2 is touched, and it will be changed to 100,000pps if Sensor 3 is touched. 
The code for this application and the resulting velocity profiles are shown as follows (Descriptions for 
sensor status acquisition are omitted here): 
 

 
Moving part

Sensor 2Sensor 1 Sensor 3

Motor

 
_8443_fix_speed_range(axis,100000.0); 
_8443_start_ta_move(axis,200000.0,1000,10000,0.02,0.01); 
while(!_8443_motion_done(axis)) 
{ 

// Get sensor information from other I/O board 
 
if((Sensor1==High)&&(Sensor2==Low)&&(Sensor3==Low)) 
_8443_v_change(axis,25000,0.02); 
else if((Sensor1==Low)&&(Sensor2==High)&&(Sensor3==Low)) 
_8443_v_change(axis,50000,0.02); 
else if((Sensor1==Low)&&(Sensor2==Low)&&(Sensor3==High)) 
_8443_v_change(axis,100000,0.02); 

} 
 
The information of three sensors is acquired from other I/O board. The resulting velocity profile from the 
experiment is shown below. 
 

 
Related functions:  
_8443_v_change(),_8443_sd_stop(),_8443_emg_stop(), 
_8443_fix_speed_range(),_8443_unfix_speed_range(), 
_8443_get_currebt_speed()  
:  Refer to section 6.5 
 

 



YA7233-0/6E 

- 76 - 

4.6.2 Change Position On The Fly (Position Override) 
 
When operating in the single-axis absolute pre-set motion, it is possible to change the target position during 
the operation by function call _8443_p_change(). 
 

 

 

 
 

 
Work theory of _8443_p_change() : 
_8443_p_change() is applicable on _8443_start_ta_move(), and _8443_start_sa_move() only. It is used 
to change the target position that has been defined originally by these two functions. After changing the 
position, the axis will move to the new target position and totally disregard the original position. If the new 
position has been already passed, the axis will Decelerate to stop, and will reverse as shown in the below 
figure. The acceleration and deceleration rate, the StrVel and MaxVel, will be kept the same as the original 
settings. 
 

 
Speed   
 

 
Original target position 

 
Position                                                         New target position                                     
 

 

 
 
Constrains of _8443_p_change(): 
 

1. _8443_p_change() is only applicable in single-axis absolute pre-set motion, ie, 
_8443_start_ta_move(), and _8443_start_sa_move() only. 

2. Position change in the deceleration period is not allowed. 
3. There must be enough distance between the new target position and the current position when 

_8443_p_change() is executed because PPCIe-8443 needs enough pulses to finish the 
deceleration operation. 

 

_8443_P_change() 

_8443_start_ta_move() 
New  
end point  

Original 
end point 

i  



YA7233-0/6E 

- 77 - 

Example:  
When a trapezoidal absolute positioning operation is applied: 
_8443_start_ta_move(0,10000,0,1000,0.5,1):  
Axis 0 will move to the pulse 10000 position, and the maximum velocity is 1000 pps.  
 
The required number of pulses to decelerate is 0.5 * 1000 * 1 = 500. 
At the current position described below, using_8443_p_change(0, NewPos), you will override the target 
position when New Position of 5000 with OK in the below table. 
. 

 
New Positon Current Position OK/ Error Note 

5000 4000 OK  
5000 4501 Error  
5000 5000 Error  
5000 5499 Error  
5000 6000 OK Reverse operation 
5000 9499 OK Reverse operation 
5000 9500 Error  
5000 9999 Error  

 
An error occurs if there are not enough pulses between the current position and the new position or the 
deceleration has already started when the function is executed.  
 
 
Related functions:  
_8443_p_change(): Refer to section 6.6 



YA7233-0/6E 

- 78 - 

4.7 Comparator and Latch 
 
PPCIe-8443 provides position comparator functions in axis 0 and 1, and position latch functions in axis 2 
and 3. The comparator function is to output a trigger pulse when the counter reaches the value you set. 
CMP0 (Axis0) and CMP1 (Axis 1) are used for comparator triggers. The latch function is to capture values 
of all 4 counters (refer to section 4.4) at the instant when the latch signal is activate.  
LTC2 (Axis 2) and LTC3 (Axis 3) in CN2 are used to receive latch pulses input. 
 
 
4.7.1 Comparator of PPCIe-8443 
 
There are five comparators in every axis of PPCIe-8443. Each comparator has a unique functionality. 
Please refer to the table below: 
 

 Comparator source Description Related function 

Comparator 1 Command position 
counter 

Software limit (+) 
(Refer to section 4.9) _8443_set_soft_limit 

_8443_enable_soft_limit 
_8443_disable_soft_limit Comparator 2 Command position 

counter 
Software limit (−) 
(Refer to section 4.9) 

Comparator 3 
Position error 
counter 
  

Out of step detection _8443_error_counter_check 

Comparator 4 Any counters  General-purpose  _8443_set_general_comparator 

Comparator 5 
(Axis 0 and 1 only) 

Feedback position 
counter  

Position comparison 
function (Trigger) 

_8443_set_trigger_comparator 
_8443_build_compare_function 
_8443_build_compare_table 
_8443_set_auto_compare 

 

 
Note: Not all of the five comparators have the ability to output a trigger pulse via CMP. It is only the 
comparator 5. 
 
 
The comparator 1 and 2 are for software limits (refer to section 4.9).  
The comparator 3 is used to compare with position error counter. It is very useful for out-of-step detection of 
stepping motors. To enable or disable out-of-step detection and the allowable tolerance can be set by the 
function: _8443_set_error_counter_check(). 
PPCIe-8443 will generate an interrupt signal if the out-of-step detection is enabled and out-of-step is 
detected. 
The comparator 4 is a general-purpose comparator, which will generate an interrupt (default setting) if the 
comparator condition is satisfied. The comparator source counter can be any counter. The comparator 
value, source counter, comparison method, and the reaction can be set by the software function call 
_8443_set_general_comparator(). 
 

 



YA7233-0/6E 

- 79 - 

4.7.2 Position Comparator 
 
The position comparator function is performed by the 5th comparator, whose comparison source is the 
feedback position counter. Only the first two axes (0 and 1) can perform position comparator functions. The 
position comparator function is to trigger a pulse output via CMP, when the comparison condition is 
satisfied. 
The comparing condition consists of two parts; the first is the value to be compared, and the other is the 
comparison modes. Comparison mode can be “>” , “=” or “<”. The easiest way to use position comparator 
function is to call the software function: 
_8443_set_trigger_comparator(AxisNo, Method, Data) 
The second parameter “Method” indicates the comparison method, while the third “Data” is for value to be 
compared. In continuous comparison, this data will be ignored automatically since the comparison data will 
be created by other functions. 
 
Continuous comparison function 
For users who want to compare multiple data continuously, functions to build comparison tables are 
provided as follows: 
 

_8443_build_comp_function(AxisNo,Start,End,Interval,device) 
_8443_build_comp_table(AxisNo,tableArray,Size,device) 
_8443_set_auto_compare(AxisNo,SelectSource) 

 
Note: 1. Please turn off all interrupt functions when the above functions are running 
 
_8443_build_comp_function () is used to build a compare list by the start point, the end point and the 
constant interval.  
_8443_build_comp_table () is used to build an arbitrary comparing table (data array).  
_8443_set_auto_compare() is a comparison source selection function. Please put a value “1” in this 
parameter for using FIFO mode. Once it is set, the comparison mechanism will start. You can check the 
current value which is going to be compared by _8443_check_compare_data(): 
 
The following is an example of using continuous position comparison functions: 
 

 v

t

CCD 
Camera

Trigger Output

1    2    3    4    5    6

 
 
In this application, the table is controlled by the motion command and the CCD Camera is controlled by the 
position comparator output. The image of moving object can be obtained in this way easily. 
 
Working Specification: 34000 triggering points per stroke and trigger speed is 6000 (pts / s) 



YA7233-0/6E 

- 80 - 

Host 
RAM 

 

  

 

  

Program will be set as follows: 
 Table will start moving from counter positon 0 to 36000. 
 Comparing points are from 1001 to 35000 and the total will be 34000 pts. The points to points 

interval = 1 pulse.  
 Moving speed is 6000 pps 
 The comparison condition is “=”.  

Trigger output per matching of the counter value and the data set by this function.  
_8443_set_trigger_comparator(0, 1, 1, 1001);//set comparison method 
_8443_build_compare_function(0, 1001, 35000, 1, 1); //build a constant interval comparison 
data table 
_8443_set_auto_compare(0, 1);//start continuously comparison  
_8443_start_tr_move(0, 36000, 0, 6000, 0.01, 0.01);//axis operation starts 

 
You can confirm the current comparison data and check whether the continuous comparator function is 
operating with the following function:  
 
_8443_check_compare_data(0, 5, *CurrentData); 
 
Operation results: 
 

 

 

 

 

 

 

 

 

 
 
The mechanism of the continuous comparator function is as follows: 
 

Trigger Pulse 30 us 
width 

 

 

 

 

 

 

 

 

 

 

 
The “Value” block in the figure means the position which is going to be compared, and you can use 
_8443_check_compare_data() function to check it. Please note that at the final comparison point, it will 
still load an “after-final” point into the “Value” block. Please fill a dummy point into the comparison table 
array at the final position, and this value must be far away from the table’s stroke. 
If using _8443_build_compare_function() , it will load a dummy “after-final” point automatically.  
The value is 134217727. 
 
Relative Function: 
_8443_set_trigger_comparator(), _8443_build_compare_function(), 
_8443_build_compare_table(), _8443_set_auto_compare(), 
_8443_check_compare_data(),_8443_set_trigger_type ()  
: Refer to section 6.17. 

Period = 166 μs 

Comparator 

Value 

3584 points background transfer 
 Data transfer interrupt 

4K 32 bit 
FIFO 

Pulse Width 30 μs 



YA7233-0/6E 

- 81 - 

4.7.3 Position Latch 
 
The position latch function is to capture the all counters’ data instantly on receiving the LTC pulse input. The 
latency between occurring of latch signal and finishing of position capturing is extremely short, since the 
latching procedure is made by hardware. Only the last two axes (2 and 3) can do position latch function. 
LTC2 (Axis 2) and LTC3 (Axis 3) are used to receive the latch pulse. 
 
To set the latch logic: _8443_set_ltc_logic(). 
To get the latched values of counters: _8443_get_latch_data(AxisNo, CntNo, Pos).  
The second parameter “CntNo” is used to indicate the counter of which the latched data will be read.  
And, latch such as ORG input, besides the input by LTC terminal, can be set by the 
_8443_set_enable_inp() command. 
 
Related functions:  
_8443_set_ltc_logic(),_8443_get_latch_data(): Refer to section 6.17 
 

4.8 Backlash Compensator and Vibration Suppression 
 
Whenever direction change is occurred, PPCIe-8443 can output backlash corrective pulses before sending 
commands. The function _8443_backlash_comp() can set the number of pulse. 
 

 

 

 

 

 

 

 

 

 

 

 

 
In order to minimize the vibration when a motor stops, PPCIe-8443 can output a single pulse for negative 
direction and then a single pulse for positive direction right after completion of command movement. Refer 
to the following figure: the function _8443_suppress_vibration() is used to set the T1 & T2. 
 

 
(+) pulse 
 

 
(−) pulse  
 

 

 

 

 
Related functions:  
_8443_backlash_comp(),_8443_suppress_vibration(): Refer to section 6.6  
 

 
T2/2 

Final pulse  

T1/2 

T1 T2 

+ direction operation 

Backlash compensator 

− direction operation 

Backlash compensation operation is 
executed automatically when the 
operation direction changes. 

+ direction command 

− direction command 



YA7233-0/6E 

- 82 - 

4.9 Software Limit Function 
 
PPCIe-8443 provides two software limits for each axis. The soft limit is extremely useful to protect your 
mechanical system, and it works the same as a physical limit switch. 
The software limit is built-in the comparator 1 and 2 (please refer to section 4.7.1), and the compare source 
is the command position counter. The working theory is that if you pre-set limit values on comparator 1 and 
2, when the command position counter reached the set limit values, PPCIe-8443 responses the same way 
as the physical limit switch is touched. Then, the motor stops immediately or decelerates to stop. 
_8443_set_soft_limit(): To set the software limit 
_8443_enable_soft_limit(): To enable the software limit  
_8443_diable_soft_limit():  To disable the software limit 
 
[Setting example A] 
 

 

 

 

 

 

 

 

 

 
By setting a software limit inside the hard limit, even if a large amount of movement is mistakenly set / 
commanded, it stops before the hardware limit.  
 
[Setting example B] 
 

 

 

 

 

 

 

 

 

 
By setting a software limit outside the hardware limit, even if the hard limit signal does not turn on due to 
sensor malfunction or the like, it is used as a failsafe to stop at a position slightly exceeding the hardware 
limit. 
 
Note: The software limit will work based on the command position counter, not the feedback position 

counter (please refer to 4.4).  
Unlike the physically placed hardware end limit sensor etc., please note that the software limit is set 
based on the position of the command counter 0. 

 
Related functions:  
_8443_set_soft_limit(),_8443_enable_soft_limit(),_8443_diable_soft_limit() 
: Refer to section 6.17  
 

Negative 
Hardware limit  

Positive 
Hardware limit 
 

Negative 
Software limit 

Positive  
Software limit 

Negative 
Software limit 
 

Positive  
Software limit  

Negative 
Hardware limit 

Positive 
Hardware limit 

MEL MSEL PSEL PEL 

MSEL MEL PEL PSEL 

Normal operation range 

Normal operation range 



YA7233-0/6E 

- 83 - 

4.10 Interrupt Control 
 
PPCIe-8443 can generate INT signal to the host PC. The parameter “intFlag” of software function call 
_8443_int_control(), can enable/disable the interrupt operations. 
After an interrupt occurs, the function _8443_get_int_status() is used to receive the INT status, which 
contains information about INT signal. 
The interrupt cause of PPCIe-8443 consists of an error interrupt factor (error_int_status) and an event 
interrupt factor (event_int_status). 
The event_int_status recodes the motion and comparator event under normal operation, and this kind of 
INT status can be masked by _8443_set_int_factor().  
The error_int_status is for abnormal stop of PPCIe-8443. For example: EL, ALM … etc., these kind of INT 
cannot be masked.  
 
The following is the definitions of these two int_status: 
 

event_int_status: Enable / disable of each bit can be set with function_8443_int_factor () 
Bit Description 
0 Normal stop 
1 Next command starts 
2 Command pre-register 2 is empty and can be written 
3 (Reserved) 
4 Acceleration Start 
5 Acceleration End 
6 Deceleration Start 
7 Deceleration End 
8 (Reserved) 
9 (Reserved) 
10 Out of step occur 
11 General comparator compared(condition is satisfied)  
12 Comparator triggered for axis 0 and axis1(satisfied) 
13 (Reserved) 
14 Counter Latched for axis 2 and axis 3 
15 ORG input and latched 
16 SD on 
17 (Reserved) 
18 CSTA, sync. start on 
19 (Reserved) 

20 ~ 31 (Reserved) 
 



YA7233-0/6E 

- 84 - 

 

error_int_status: cannot be masked if interrupt operation is activated 
Bit Description 
0 + Software limit on and stop 
1 − Software limit on and stop 
2 (Reserved) 
3 General comparator on and stop 
4 (Reserved) 
5 + End Limit on and stop 
6 − End Limit on and stop 
7 ALM happen and stop 
8 CSTP, Sync. stop on and stop 
9 CEMG, Emergency on and stop 
10 SD on and slow down to stop 
11 (Reserved) 
12 Interpolation error and stop 
13 Other axis stop on interpolation 
14 Pulser input buffer overflow and stop 
15 Interpolation counter overflow 
16 Encoder input signal error 
17 Pulser input signal error 

18 ~ 31 (Reserved) 
 
Use events to deal with interrupt under Windows 
In order to detect the interrupt signal from PPCIe-8443 under Windows, you must create and event array 
first. Then use functions provided by PPCIe-8443 to obtain the interrupt status. The sample program 
description is as follows: 
1. Define the event array as a global value to deal with interrupt events.  Please define the event array 

by the same element count as the maximum axis No. (+1) of PPCIe-8443. Each event is linked to one 
axis 
HANDLE hEvent[4]; // Define the event array for 4 axes  

2. Enable an interrupt event operation, and set up the interrupt factors and enable the interrupt channel: 
_8443_int_enable(0,&hEvent[0]) ;  // Interrupt event setting 
_8443_set_int_factor(0,0x01) ;  // Interrupt factor setting(normal stop interrupt) 
_8443_int_control(0,1) ;  // Enable interrupt event 

3. Start operation command 
_8443_start_tr_move(0,12000,0,10000,0.1,0.1); 

4. Wait axis 0 interrupt event 
STS=WaitForSingleObject(hEvent[0],15000); 
ResetEvent(hEvent[0]); 
if(STS==WAIT_OBJECT_0) 
{ 

_8443_get_int_status(0,&error,&event); // Get interrupt event 
if(event==0x01) …… ; //  Successful  

} 
else if(STS==WAIT_TIME_OUT) 
{ 

// Time out, Failed  
} 

 
Now, you can receive interrupts from each axis with such a description.  
 
Related functions:  
_8443_int_control(),_8443_set_int_factor(),_8443_int_enable(), 
_8443_int_disable(),_8443_get_int_status(),_8443_link_interrupt(), 
:  Refer to section 6.15. 
 



YA7233-0/6E 

- 85 - 

4.11  Idling Control 
 
In this mode, acceleration can be started after outputting several idling pulses at the start speed (StrVer) in 
acceleration / deceleration operations. 
The pulse number setting on idl_pulse parameter of _8443_set_idle_pulse() command define the delay 
time of the acceleration. Even when this function is used on position mode, the total moving distance will 
remain unchanged.  
 
The timing diagram of the idling pulse setting and how acceleration begins are shown as follows: 
A value of "idl_pulse parameter set value − 1" is applied to the idling pulse. 
 

 

 

 
Related functions:  
_8443_set_idle_pulse(): Refer to section 6.6 
 

When 
n=0, 1 

When 
n=3  

Acceleration starts at the 0th pulse  

Acceleration starts at the 3rd pulse  
(Idling pulse output: n -1 = 2 pulse) 



YA7233-0/6E 

- 86 - 

5. PPCIe-8443 Utility  
 
PPCIe-8443 Utility provides a simple, yet powerful means to setup, configure, test and debug a motion 
control system that uses PPCIe-8443 boards. 
 
After installing all the hardware properly according to Chapter 2 and 3, it is necessary to correctly configure 
boards and double check before running. This chapter gives guidelines for establishing a control system 
and manually exercising PPCIe-8443 board to verify the correct operations. 
 

 

5.1 Execute PPCIe-8443 Utility 
 
After installing the software driver of PPCIe-8443 on Windows 7/8/10, PPCIe-8443 Utility program can be 
find in <chosen path >/ PPCIe-8443/Utility. To execute it, double click it or use desk top “Start”    Program 
files”    “PPCIe-8443”    “PPCIe8443 Utility”. 
 

5.2 About PPCIe-8443 Utility 
 
Before running PPCIe-8443 Utility, note the following items: 
 

1 PPCIe-8443 Utility is a program written by VB 6.0, and is useable only for Windows with the screen 
resolution higher than 800 x 600 environments. 

2 PPCIe-8443 Utility allows you to save settings or configurations for PPCIe-8443 boards and the 
saved settings and configurations will be loaded automatically when PPCIe-8443 Utility is executed 
later again. The two files 8443.ini and 8443MC.ini in windows root directory are used to save all 
settings and configurations. 

3 To duplicate configurations from one system to another system, just copy 8443.ini and 8443MC.ini 
into windows root directory. 

4 If you want to use the configurations set by PPCIe-8443 Utility, the DLL function call 
_8443_config_from_file() is helpful. After calling this function in your program, you can use those 
PPCIe-8443 boards as the same configuration as set by PPCIe-8443 Utility. 

 
 

 

 

 

 

 



YA7233-0/6E 

- 87 - 

5.3 PPCIe8443 Utility Screen Introduction 
 
5.3.1 Board ID Switch Enable / Disable Screen 
 

The Board ID switch Enable / Disable screen appears after starting PPCIe8443 Utility. 
In this screen, select whether to enable or disable board ID switch.  
 

 
 Select the Board ID switch Enable or Disable.  

When Enable is selected, board ID setting  
by SW1 is applied. 

        Please refer to section 4.5 for details of board 
 ID setting.  

 
 Go to Main Screen 
 
 Exit PPCIe8443 Utility 

 

 

 

 

 
5.3.2 Main Screen 
 
The main screen is displayed as follows:  
 
 Board ID switch enable / disable  

status indication 
 

 Select operation board and  
axis 

 Configuration screen (refer to  
section 5.3.4)  

 Go to Interface I/O Configuration  
Screen (refer to section 5.3.2) 

 Go to Pulse & INT configuration 
screen (refer to section 5.3.3)  

 
 Board information: 

Related functions 
_8443_get_base_addr(), 
_8443_get_irq_channel() 

 
 Exit PPCIe8443 Utility  

 



YA7233-0/6E 

- 88 - 

5.3.3 Interface I/O Configuration Screen 
 
In this screen, you can set configurations of EL, ORG, EZ, ERC, ALM, INP, SD, and LTC. 
 

1

2

3

4

5

6

7

8

9

 
 

1. ALM Logic and Response mode: Select the logic and the response mode of ALM signal. 
The related function call is _8443_set_alm(). 

2. INP Logic and Enable / Disable selection: Select the logic and Enable / Disable of INP signal. The 
related function call is _8443_set_inp(). 

3. ERC Logic and Active timing: Select the logic and active timing (pulse signal width) of ERC signal. 
The related function call is _8443_set_erc(). 

4. EL Response mode: Select the response mode of EL signal. The related function call is 
_8443_set_el(). 

5. ORG Logic: Select the logic of ORG signal. The related function call is _8443_set_home_config(). 
6. EZ Logic: Select the logic of EZ signal. The related function call is _8443_set_home_config(). 
7. SD Configuration: Configuration of SD signal. The related function call is _8443_set_sd(). 
8. LTC Logic: Select the logic of LTC signal. The related function call is _8443_set_ltc_logic(). 
9. Buttons: 
 Next Axis: Click this button to change operating axis. 
 Save Config: Click this button to save current configuration to 8443.ini. 
 Operate: Go to operate form (refer to section 5.3.4) 
 Config Pulse & INT: Go to Pulse IO & Interrupt Configuration Form (refer to section 5.3.3).  
 Back: Click this button to go back main screen. 

 



YA7233-0/6E 

- 89 - 

5.3.4 Pulse I/O and interrupt configuration screen 
 
In this screen, you can set the configuration of pulse input / output, move ratio, and INT factor. 
 

 

 

1

2

3
4

 
 
1. Pulse Output Mode: Select the output mode of pulse signal (OUT / DIR). The related function call is 

_8443_set_pls_outmode(). 
2. Pulse Input: Set the configurations of Pulse input signal (EA / EB). The related function call is 

_8443_set_pls_iptmode(), _8443_set_feedback_src(). 
Move Ratio: Set the resolution ratio (feedback / pulse command) for current target axis. The value 
should not be ‘0’. The related function call is _8443_set_move_ratio(). 

3. INT Factor: Select factors to initiate the event INT. The related function call is _8443_set_int_factor(). 
4. Buttons: 

Next Axis: Click this button to change the operating axis. 
Save Config: Click this button to save current configuration to 8443.ini. 
Operate: Go to operate form (refer to section 5.3.4) 
Config Interface I/O: Go to Interface I/O Configuration Form (refer to section 5.3.2) 
Back: Click this button to go back to Main screen. 

 
 



YA7233-0/6E 

- 90 - 

5.3.5 Operation screen 
 
This is the main screen for various operations for each axis (velocity mode, preset relative / absolute, 
manual pulser, and home return).  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1. Position: 

*Command: display the value of command counter. The related function is _8443_get_command(). 
*Feedback: display the value of feedback position counter.  
The related function is _8443_get_position(). 

* Pos Error: display the value of position error counter.  
The related function is _8443_get_error_counter(). 

*Target Pos: display the value of target position recorder.  
The related function is _8443_get_target_pos(). 
 

2. Set Position: Set all position counters to specified value. The related functions are: 
_8443_set_Posision() 
_8443_set_command() 
_8443_reset_error_counter() 
_8443_reset_target_pos() 

 
3. Motion Status: display the return value of _8443_motion_done function. The related function is 

   _8443_motion_done(). 
 

4. INT Status: 
Event: Display the event_int_status in Hex value. The related function is _8443_get_int_status(). 
Error: Display the error_int_status in Hex value. The related function is _8443_get_int_status(). 
Count: Count the total number of interrupt. 
Clear Button: Click this button will clear all INT status and counter to “0”. 

 
5. Velocity:  

Absolute value of the velocity (unit: pps). The related function is _8443_get_current_speed(). 
 

1 

2 

3 

4 

5 

6 
14 

15 

16 

17 18 

20 

19 

7 

8 9 10 
11 

12 

13 



YA7233-0/6E 

- 91 - 

6. Show Velocity Curve Button: Clicking this button will open the screen showing velocity vs. time curve. 
In this curve, a new velocity data is added every 100 ms. To close it, click this button again. To clear 
data, click on the curve in the graph.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
7. Operation Mode: Select operation mode. 

• Absolute Mode: “Position1” and “position2” will be used as the absolute target position for an 
operation. The related function is _8443_start_ta_move() and _8443_start_sa_move(). 

• Relative Mode:  “Distance” will be used as relative displacement for an operation. The related 
function is _8443_start_tr_move() and _8443_start_sr_move(). 

• Cont. Move: Velocity operation mode. The related function is _8443_tv_move(). 
• Manual Pulser Move: Manual Pulser operation. Click this button will open the manual pulse 

configuration screen window to set input pulse mode and pulse logic.  . 
 

 

 

 

 

 

• Home mode :  
Set the axis operation mode to the homing operation. 
Home Move Configuration setting screen is displayed and 
a home mode can be selected. The related function is 
_8443_set_home_config(). 
ERC Output: Select if the ERC signal will be sent when a 
homing operation is completed. 
EZ Count: Set the EZ count number which is effective in a 
home return mode. 
Mode: Select a home return mode. There are 13 modes 
available 
Figure: The figure explains the actions of each homing 
mode. 
Close: Click the button to close this screen.  
 

 

 

Set the input pulse  
mode 

Set the pulse logic 



YA7233-0/6E 

- 92 - 

8. Position:  
Set the absolute position for “Absolute Mode”. It is only effective when “Absolute Mode” is selected. 

9. Distance:  
Set the relative distance for “Relative Mode”. It is only effective when “Relative Mode” is selected. 

10. Repeat Mode:  
When “ON” is selected, the motion will be repeated (reciprocating motion). 
It is only effective when “Relative Mode” or “Absolute Mode” is selected. 
In Absolute Mode: reciprocating motion between Position 1 and Position 2 
In Relative Mode: reciprocating motion with the Distance value. 

11. Vel.Profile:  
    Select the velocity profile. Either Trapezoidal or S-curve is available for “Absolute Mode”, “Relative 

Mode”, and “Cont. Move”. 
12. Motion Parameter:  
    Set the parameters for a single axis operation. These parameters are meaningless if “Manual Pulser 

Move” is selected since the velocity and moving distance is decided by the pulser input. 
• Start Velocity: Set the start velocity of operation in the unit of pps. In “Absolute Mode” or “Relative 

Mode”, only the value is effective (ie, −100.0 is the same as 100.0). In “Cont. Move”, both the value 
and the sign are effective (–100.0 means 100.0 in the minus direction). 

• Maximum Velocity: Set the maximum velocity of motion in unit of pps. In “Absolute Mode” or 
“Relative Mode”, only the value is effective. (ie, −5000.0 is the same as 5000.0). In “Cont. Move”, 
both the value and sign are effective (–5000.0 means 5000.0 in the minus direction). 

• Accel. Time: Set the acceleration time (unit: s). 
• Decel. Time: Set the deceleration time (unit: s). 
• SVacc: Set the S-curve range during acceleration (unit: pps). 
• SVdec: Set the S-curve range during deceleration (unit: pps). 
• Move delay: This setting is effective only when repeat mode is set to “ON”. The second operation is 

executed with a delay of the set time (seconds) after the first operation is completed.  
13. Speed Range:  

Set the maximum speed of an operation. If “Not Fix” is selected, the “maximum speed” will 
automatically become the maximum speed range. 

14. Servo On:  
Set the SVON signal output status. The related function is _8443_set_servo(). 

15. Play Key:  
    Left button: Click this button will cause PPCIe-8443 start to output pulses according to the operation 

settings at the upper part of the screen. 
In “Absolute Mode”, it causes the axis to move to position1. 
In “Relative Mode”, it causes the axis to move in the positive direction. 
In “Cont. Move”, it causes the axis to start moving according to the set velocity. 
In “Manual Pulser Move”, it cause axis to be in the pulser move. The maximum speed can be set by 
“Maximum Velocity” 

Right button: Click this button will cause PPCI8443 start to output pulses according to the operation 
settings at the upper part of the screen. 
In “Absolute Mode”, it causes the axis to move to position 2. 
In “Relative Mode”, it causes the axis to move in the negative direction. 
In “Cont. Move”, it causes the axis to start moving according to the set velocity, but the other direction. 
In “Manual Pulser Move”, it cause axis get into pulser move. The speed limit is the value set by 
“Maximum Velocity” 

16. Change Position On The Fly Button:  
When this button is enabled, you can change the target position in the current motion. The new position 
must be defined in “Position 2”. The related function is _8443_p_change(). 

17. Change Velocity On the Fly Button:  
When this button is enabled, you can change the velocity in the current motion. The new velocity must 
be defined in “Maximum Velocity”. The related function is _8443_v_change(). 

18. Stop Button:  
    Click this button will cause PPCIe-8443 to decelerate and stop. The deceleration time is defined in 

“Decel. Time”. The related function is _8443_sd_stop(). 
19. I/O Status:  

The status of motion I/Os, LED lighting indicates signal ON, and OFF indicates signal OFF. The related 
function is _8443_get_io_status(). 



YA7233-0/6E 

- 93 - 

20. Buttons: 
• Next Axis: Change the operating axis. 
• Save Config: Save the current configuration in 8443.ini. 
• Config Pulse & INT: Go to Pulse IO and Interrupt Configuration screen (refer to section 5.3.3). 
• Config Interface I/O: Go to Interface I/O Configuration screen (refer to section 5.3.2). 
• Back: Go back to Main screen. 



YA7233-0/6E 

- 94 - 

6. Function Library 
 
This chapter describes the supporting software for PPCIe-8443. You can use these functions to develop 
application programs in C or Visual Basic or C++ language. If Delphi is used as the programming 
environment, it is necessary to transform the header file, 8443.h, manually. 
 

6.1 List of Functions 
 
Initialization (default)   Section 6.3 

Function Name Description 
_8443_initial Software initialization 
_8443_close Software Close 
_8443_get_base_addr Get base address of PPCIe-8443 
_8443_get_irq_channel Get PPCIe-8443 board’s IRQ number 
_8443_delay_time Delay execution of program for specified time (ms). 
_8443_config_from_file Configure PPCIe-8443 board according to configuration file  

(ie. 8443.ini), which is created by PPCIe8443 Utility. 
_8443_version_info Check the hardware and the software version 
_8443_enable_manual_id Enable the dip switch (SW1) on board to specify manual board ID 

 
Pulse Input/Output Configuration Section 6.4 

Function Name Description 
_8443_set_pls_outmode Set pulse command output mode 
_8443_set_pls_iptmode Set encoder input mode 
_8443_set_feedback_src Set counter input source 

 
Velocity mode operation Section 6.5 

Function Name Description 
_8443_tv_move Accelerate an axis to a constant velocity with trapezoidal profile 
_8443_sv_move Accelerate an axis to a constant velocity with S-curve profile 
_8443_v_change Change speed on the fly (Speed override) 
_8443_sd_stop Decelerate to stop 
_8443_emg_stop Immediately stop 
_8443_fix_speed_range Define the speed range 
_8443_unfix_speed_range Release the speed range constrain 
_8443_get_current_speed Get the current speed 
_8443_verify_speed Check the min/max acceleration time under the maximum speed 

 

 
Single Axis Positioning Operation  Section 6.6 

Function Name Description 
_8443_start_tr_move Begin a relative trapezoidal profile move 
_8443_start_ta_move Begin an absolute trapezoidal profile move 
_8443_start_sr_move Begin a relative S-curve profile move 
_8443_start_sa_move Begin an absolute S-curve profile move 
_8443_set_move_ratio Set the ratio of command pulse and feedback pulse. 
_8443_p_change Change position on the fly (Position override) 
_8443_set_pcs_logic Set the logic of PCS (Position Change Signal) 
_8443_set_sd_pin Set SD/PCS terminal 
_8443_backlash_comp Set backlash corrective pulse for compensation 
_8443_suppress_vibration Set vibration suppressing timing 
_8443_set_idle_pulse Set suppress vibration idle pulse counts 

 



YA7233-0/6E 

- 95 - 

Linear Interpolation Operation    Section 6.7 
Function Name Description 

_8443_start_tr_move_xy Begin a relative 2-axis linear interpolation for X & Y, with trapezoidal 
 _8443_start_ta_move_xy Begin an absolute 2-axis linear interpolation for X & Y, with trapezoidal. 

profile 
_8443_start_sr_move_xy Begin a relative 2-axis linear interpolation for X & Y, with S-curve profile. 
_8443_start_sa_move_xy Begin an absolute 2-axis linear interpolation for X & Y, with S-curve 

 _8443_start_tr_move_zu Begin a relative 2-axis linear interpolation for Z & U, with trapezoidal 
fil  _8443_start_ta_move_zu Begin an absolute 2-axis linear interpolation for Z & U, with trapezoidal 

 _8443_start_sr_move_zu Begin a relative 2-axis linear interpolation for Z & U, with S-curve profile. 
_8443_start_sa_move_zu Begin an absolute 2-axis linear interpolation for Z & U, with S-curve 

fil  _8443_start_tr_line2 Begin a relative 2-axis linear interpolation for any 2 axes, with 
trapezoidalprofile. 

_8443_start_sr_line2 Begin a relative 2-axis linear interpolation for any 2 axes, with S-curve 
fil  _8443_start_ta_line2 Begin an absolute 2-axis linear interpolation for any 2 axes, with 

trapezoidal profile. 
_8443_start_sa_line2 Begin an absolute 2-axis linear interpolation for any 2 axes, with S-curve 

profile. 
_8443_start_tr_line3 Begin a relative 3-axis linear interpolation with trapezoidal. 
_8443_start_sr_line3 Begin a relative 3-axis linear interpolation with S-curve profile. 
_8443_start_ta_line3 Begin an absolute 3-axis linear interpolation with trapezoidal profile. 
_8443_start_sa_line3 Begin an absolute 3-axis linear interpolation with S-curve profile. 
_8443_start_tr_line4 Begin a relative 4-axis linear interpolation with trapezoidal profile. 
_8443_start_sr_line4 Begin a relative 4-axis linear interpolation with S-curve profile. 
_8443_start_ta_line4 Begin an absolute 4-axis linear interpolation with trapezoidal profile. 
_8443_start_sa_line4 Begin an absolute 4-axis linear interpolation with S-curve profile. 
_8443_set_line_move_mode Set continuous line interpolation mode. 
_8443_set_axis_option Select the interpolation speed mode 

 



YA7233-0/6E 

- 96 - 

Circular Interpolation Operation   Section 6.8 
Function Name Description 

_8443_start_r_arc_xy Begin a relative circular interpolation for X & Y. 
_8443_start_a_arc_xy Begin an absolute circular interpolation for X & Y. 
_8443_start_r_arc_zu Begin a relative circular interpolation for Z & U. 
_8443_start_a_arc_zu Begin an absolute circular interpolation for Z & U. 
_8443_start_r_arc2 Begin a relative circular interpolation for any 2 of the 4 axes. 
_8443_start_a_arc2 Begin an absolute circular interpolation for any 2 of the 4 axes. 
_8443_start_tr_arc_xy Begin a trapezoidal relative circular interpolation for X & Y. 
_8443_start_ta_arc_xy Begin a trapezoidal absolute circular interpolation for X & Y. 
_8443_start_sr_arc_xy Begin a s-curve relative circular interpolation for X & Y. 
_8443_start_sa_arc_xy Begin a s-curve absolute circular interpolation for X & Y. 
_8443_start_tr_arc_zu Begin a trapezoidal relative circular interpolation for Z & U. 
_8443_start_ta_arc_zu Begin a trapezoidal absolute circular interpolation for Z & U. 
_8443_start_sr_arc_zu Begin a s-curve relative circular interpolation for Z & U. 
_8443_start_sa_arc_zu Begin a s-curve absolute circular interpolation for Z & U. 
_8443_start_tr_arc2 Begin a trapezoidal relative circular interpolation for any 2 of the 4 axes. 
_8443_start_ta_arc2 Begin a trapezoidal absolute circular interpolation for any 2 of the 4 axes. 
_8443_start_sr_arc2 Begin an s-curve relative circular interpolation for any 2 of the 4 axes. 
_8443_start_sa_arc2 Begin an s-curve absolute circular interpolation for any 2 of the 4 axes. 

 
Helical Interpolation Operation   Section 6.9 

Function Name Description 
_8443_set_tr_helical_xzy Begin a t-curve relative helical interpolation for X, Z and Y. 
_8443_set_ta_helical_xzy Begin a t-curve absolute helical interpolation for X, Z and Y. 
_8443_set_sr_helical_xzy Begin a s-curve relative helical interpolation for X, Z and Y. 
_8443_set_sa_helical_xzy Begin a s-curve absolute helical interpolation for X, Z and Y. 
_8443_set_tr_helical_xyz Begin a t-curve relative helical interpolation for X, Y and Z. 
_8443_set_ta_helical_xyz Begin a t-curve absolute helical interpolation for X, Y and Z. 
_8443_set_sr_helical_xyz Begin an s-curve relative helical interpolation for X, Y and Z. 
_8443_set_sa_helical_xyz Begin an s-curve absolute helical interpolation for X, Y and Z. 

  
Home Return Mode         Section 6.10 

Function Name Description 
_8443_set_home_config Set the home / index logic configuration. 
_8443_home_move Begin a home return operation. 
_8443_escape_home Begin escape home operation.  
_8443_home_search Begin Auto-Search Home Switch (Without ORG offset setting, the default 

ORG offset = 100). 
_8443_auto_home_search Begin Auto-Search Home Switch (With ORG offset). 

 



YA7233-0/6E 

- 97 - 

Manual Pulser Operation Section 6.11 
Function Name Description 

_8443_disable_pulser_input Disable the pulser input 
_8443_set_pulser_iptmode Set the pulser input mode. 
_8443_pulser_vmove Start the pulser v operation (velocity designation). 
_8443_pulser_pmove Start the pulser p operation (positioning). 
_8443_pulser_home_move Start the pulser home return operation. 
_8443_set_pulser_ratio Set the manual pulser ratio for actual output pulse rate. 
_8443_pulser_r_line2 Pulser mode for 2-axis linear interpolation. 
_8443_pulser_r_arc2 Pulser mode for 2-axis circular interpolation. 

 
Monitor axis operation status Section 6.12 

Function Name Description 
_8443_motion_done
 

 

Return the operation status 
 

Motion Interface I/O      Section 6.13 
Function Name Description 

_8443_set_alm Set the alarm logic and operating mode. 
_8443_set_el Set the EL operating mode. 
_8443_set_inp Set the INP logic and operating mode. 
_8443_set_erc Set the ERC logic and timing. 
_8443_set_servo Set the state of general purpose output terminal. 
_8443_set_sd Set the SD logic and operating mode. 

 
Motion I/O Monitoring  Section 6.14 

Function Name Description 
_8443_get_io_status Obtain all of the motion I/O status.  

 
Interrupt Control        Section 6.15 

Function Name Description 
_8443_int_control Enable / Disable the INT service 
_8443_set_int_factor Set the INT factor 
_8443_int_enable Enable the event 
_8443_int_disable Disable the event 
_8443_get_int_status Get the INT Status 
_8443_link_interrupt Set the link to interrupt call back function 
_8443_set_axis_stop_int Enable the axis stop interrupt 
_8443_mask_axis_stop_int Mask the axis stop interrupt 

 



YA7233-0/6E 

- 98 - 

Position Control and Counters  Section 6.16 
Function Name Description 

_8443_get_position Get the value of feedback position counter 
_8443_set_position Set the feedback position counter 
_8443_get_command Get the value of command position counter 
_8443_set_command Set the command position counter 
_8443_get_error_counter Get the value of position error counter 
_8443_reset_error_counter Reset the position error counter 
_8443_get_general_counter Get the value of general counter 
_8443_set_general_counter Set the general counter 
_8443_get_target_pos Get the value of target position recorder 
_8443_reset_target_pos Reset the target position recorder 
_8443_get_rest_command Get the remaining pulses until the end of an operation 
_8443_check_rdp Check the ramping down point data 
_8443_set_auto_rdp Enable the automatic setting ramping-down point 

 
Position Comparator and Latch     Section 6.17 

Function Name Description 
_8443_set_ltc_logic Set the LTC logic 
_8443_get_latch_data Get the latched counter data 
_8443_set_soft_limit Set the software limit 
_8443_enable_soft_limit Enable the software limit function 
_8443_disable_soft_limit Disable the software limit function 
_8443_set_error_counter_check Set the out of step detection 
_8443_set_general_comparator Set the general-purpose comparator 
_8443_set_trigger_comparator Set the trigger comparator 
_8443_set_trigger_type Set the trigger output type 
_8443_check_compare_data Check the current comparator data 
_8443_check_compare_status Check the current comparator status 
_8443_set_auto_compare Set the comparing data source for auto loading 
_8443_build_compare_function Build the compare data via constant interval 
_8443_build_compare_table Build the compare data via compare table 
_8443_cmp_v_change Speed change by comparator 
_8443_set_latch_source Set the latch signal 

 

Continuous operation        Section 6.18 
Function Name Description 

_8443_set_continuous_move Enable the continuous motion for absolute motion 
_8443_check_continuous_buffer Check if the pre-register for continuous motion is empty 

 



YA7233-0/6E 

- 99 - 

Multiple Axes Simultaneous Operation        Section 6.19 
Function Name Description 

_8443_set_tr_move_all Relative trapezoidal multi-axis simultaneous operation setup. 
_8443_set_ta_move_all Absolute trapezoidal multi-axis simultaneous operation setup. 
_8443_set_sr_move_all Relative S-curve multi-axis simultaneous operation setup. 
_8443_set_sa_move_all Absolute S-curve multi-axis simultaneous operation setup. 
_8443_start_move_all Simultaneously begin the multi-axis motion 
_8443_stop_move_all Simultaneously stop the multi-axis motion 
_8443_set_sync_option Optional sync options 
_8443_set_sync_stop_mode Set the stop mode when CSTOP signal is ON 

 
Extended General-purpose Input/Output           Section 6.20 

Function Name Description 
_8443_set_gpio_output Set digital outputs (whole port)  
_8443_get_gpio_output Get digital output status (whole port) 
_8443_get_gpio_input Get digital input status (whole port) 
_8443_set_gpio_output_CH Set digital output by channel (bit specified) 
_8443_get_gpio_output_CH Get digital output by channel (bit specified) 
_8443_get_gpio_input_CH Get digital input by channel (bit specified) 

 



YA7233-0/6E 

- 100 - 

6.2 C/C++ Programming Library 
 
This section gives the details of all the functions. The function prototypes and some common data types are 
decelerated in PPCIe8443.H. These data types are used by PPCIe-8443 library. We suggest you to use 
these data types in your application programs. The following table shows the data type names and the 
range. 
 

 

Type Description Range 
U8 8-bit ASCII character 0 ~ 255 
I16 16-bit signed integer − 32,768 ~ 32,767 
U16 16-bit unsigned integer 0 ~ 65,535 
I32 32-bit signed long integer − 2,147,483,648 ~ 2,147,483,647 
U32 32-bit unsigned long integer 0 ~ 4,294,967,295 
F32 32-bit single-precision 

 
− 3.402823E38 ~ 3.402823E38 

F64 64-bit double-precision 
floating-point 

− 1.797683134862315E309 ~ 
1.797683134862315E308 

Boolean Boolean logic value TRUE, FALSE 
 
The functions of PPCIe-8443 software drivers use full names to represent the real meanings of the functions. 
The conventional rules for naming are: 
In ‘C’ programming environment:  
_{hardware_model}_{action_name}.  e.g.  _8443_Initial(). 
In order to recognize the difference between C library and VB library, a capital “B” is put on the head of each 
function name e.g.  B_8443_Initial(). 
 

 



YA7233-0/6E 

- 101 - 

6.3 Initialization 
 
@ Function Name 
_8443_initial  - Software open and initialization process for PPCIe-8443. 
_8443_close  - Software release resources and close process of PPCIe-8443. 
_8443_get_base_addr  - Obtain the base address of PPCIe-8443. 
_8443_get_irq_channel  - Get the IRQ number for PPCIe-8443 board. 
_8443_delay_time  - Delay execution of program for specified time (unit: ms). 
_8443_config_from_file  - Configure PPCIe-8443 board according to the configuration file: “8443.ini”. 
_8443_version_info  - Check the hardware and the software version information. 
_8443_enable_manual_id - Enable the dip switch (SW1) on board to specify manual board ID. 
 
@Function Description 
_8443_initial: 

This function is used to initialize PPCIe-8443 board. The all PPCIe-8443 boards must be initialized by 
this function before calling other functions.  

_8443_close: 
This function is used to close PPCIe-8443 and release the PPCIe-8443 related resources, which 
should be called at the end of an application. 

_8443_get_base_addr: 
This function is used to get the base address for the PPCIe-8443. 

_8443_get_irq_channel: 
This function is used to get IRQ number for the PPCIe-8443. 

_8443_delay_time: 
This function is used to delay execution of program for specified time (unit: ms) 

_8443_config_from_file: 
This function is used to load the configuration of PPCIe-8443 according to a specified file. By using 
PPCIe8443 Utility, you can test and configure PPCIe-8443 correctly. After pressing “save config” 
button, the “8443.ini” file in window directory is used to record the configurations. By specifying it in the 
parameter, the configuration will be automatically loaded. 
When this function is executed, the all PPCIe-8443 boards in the system will be configured as the 
following functions that were called according to the parameters recorded in 8443.ini. 

_8443_set_pls_outmode 
_8443_set_feedback_src 
_8443_set_pls_iptmode 
_8443_set_home_config 
_8443_set_int_factor 
_8443_set_el 
_8443_set_ltc_logic 
_8443_set_erc 
_8443_set_sd 
_8443_set_alm 
_8443_set_inp 
_8443_set_move_ratio 
 

_8443_version_info: 
You can read back the hardware and software version information of the PPCIe-8443. 

_8443_enable_manual_id: 
This function is used to enable the dip switch (SW1) on board to specify manual card ID. Please note 
that it would be used before the first calling _8443_Initial(), otherwise it will be no effective. 

 



YA7233-0/6E 

- 102 - 

@ Syntax 
C/C++ (Windows XP/7/8)  

I16 _8443_initial(I16 *existCards);  
I16 _8443_close(void); 
I16 _8443_get_base_addr(I16 cardNo, U16 *base_addr );  
I16 _8443_get_irq_channel(I16 cardNo, U16 *irq_no ); 
I16 _8443_delay_time(I16 AxisNo,F64 MilliSec); 
I16 _8443_config_from_file(char *file_name); 
I16 _8443_version_info(I16 CardNo, U16 *HardwareInfo, U16 *SoftwareInfo, U16 *DriverInfo); 
void _8443_enable_manual_id(); 

 
VB.NET (Windows XP/7/8) 

B_8443_initial(ByRef existCards As Short) As Short 
B_8443_close() As Short 
B_8443_get_base_addr(ByVal cardNo As Short, ByRef base_addr As Short) As Short 
B_8443_get_irq_channel(ByVal cardNo As Short, ByRef irq_no As Short) As Short 
B_8443_delay_time(ByVal AxisNo As Short, ByVal MilliSec As Double) As Short 
B_8443_config_from_file(ByVal filename As String) As Short 
B_8443_version_info(ByVal CardNo As Short, ByRef HardwareInfo As Short, ByRef SoftwareInfo As 
Short, ByRef DriverInfo As Short) As Short 
B_8443_enable_manual_id()  
 

C# (Windows XP/7/8) 
Int16 _8443_initialx(UInt16 BaseAddress, UInt16 IRQNo); 
Int16 _8443_close(); 
Int16 _8443_get_base_addr(Int16 cardNo, ref UInt16 base_addr); 
Int16 _8443_get_irq_channel(Int16 cardNo, ref UInt16 irq_no); 
Int16 _8443_delay_time(Int16  AxisNo,Double MilliSec); 
Int16 _8443_config_from_file(ref Char file_name); 
Int16 _8443_version_info(Int16 CardNo,ref UInt16 HardwareInfo,ref UInt16 SoftwareInfo,ref UInt16 
DriverInfo); 
void _8443_enable_manual_id(); 
 

@ Argument 
*existCards: The number of existing PPCIe-8443 boards 
cardNo: The PPCIe-8443 card index number (0 starts) 
*irq_no: IRQ number of a specified PPCIe-8443 board 
*base_addr: Base address of a specified PPCIe-8443 board 
*file_name: A specified filename recording the configuration of PPCIe-8443. This file must be created 

by PPCIe8443 Utility.  
AxisNo: Axis number designated to move or stop 
MilliSec: Delay time (unit: ms) 
*Hardwareinfo: Hardware (Firmware) version read back 
*Softwareinfo: Software library version read back 
*Driverinfo: Device driver version read back 

 
@ Return Code 

ERR_NoError : 0 
ERR_NoCardFound : 24 
ERR_PCIBiosNotExist : 8 
ERR_ConigFileOpenError : 39 

 

 



YA7233-0/6E 

- 103 - 

6.4 Pulse Input/Output Configuration 
 
@ Function Name 
_8443_set_pls_outmode - Set the configuration for pulse command output. 
_8443_set_pls_iptmode  - Set the configuration for feedback pulse input. 
_8443_set_feedback_src - Enable / Disable the external feedback pulse input 
 
@ Function Description 
_8443_set_pls_outmode: 

Configure the output modes of command pulse. There are 8 modes for command pulse output. 
 
_8443_set_pls_iptmode: 

Configure the input mode of external feedback pulse. There are four types for feedback pulse input. 
Note that this function is enabled only when Src parameter in _8443_set_feedback_src () function is 
enabled. 

 
_8443_set_feedback_src: 

If the external encoder feedback is available in the system, set the Src parameter in this function to 
enabled state. Then internal 32-bit up / down counter will count according to the configuration of 
_8443_set_pls_iptmode() function. Otherwise, the counter will count the command pulse output.  . 

 
@Syntax 
C/C++ (Windows XP/7/8) 

I16 _8443_set_pls_outmode(I16 AxisNo, I16 pls_outmode); 
I16 _8443_set_pls_iptmode(I16 AxisNo, I16 pls_iptmode, I16 pls_logic);  
I16 _8443_set_feedback_src(I16 AxisNo, I16 Src); 

 
VB.NET (Windows XP/7/8) 

B_8443_set_pls_outmode(ByVal AxisNo As Short, ByVal pls_outmode As Short) As Short 
B_8443_set_pls_iptmode(ByVal AxisNo As Short, ByVal pls_iptmode As Short, ByVal pls_logic As 
Short) As Short 
B_8443_set_feedback_src(ByVal AxisNo As Short, ByVal Src As Short) As Short 
 

C# (Windows XP/7/8) 
Int16 _8443_set_pls_outmode(Int16 AxisNo, Int16 pls_outmode); 
Int16 _8443_set_pls_iptmode(Int16 AxisNo, Int16 pls_iptmode, Int16 pls_logic); 
Int16 _8443_set_feedback_src(Int16 AxisNo, Int16 Src); 

 
@Argument 

AxisNo: Axis number designated to configure pulse Input/Output (0 starts). 
pls_outmode: Setting of command pulse output mode  

0: OUT/DIR OUT: Falling edge, DIR+ is high level 
1: OUT/DIR OUT: OUT Rising edge, DIR+ is high level 
2: OUT/DIR OUT: OUT Falling edge, DIR+ is low level 
3: OUT/DIR OUT: OUT Rising edge, DIR+ is low level 
4: CW /CCW Falling edge  
5: CW /CCW Rising edge  
6: AB phase OUT is leading 90 degree phase to DIR  
7: AB phase OUT is lagging 90 degree phase to DIR  

 
pls_iptmode: setting of encoder feedback pulse input mode; EA, EB 

0:  1X A/B   
1:  2X A/B    
2:  4X A/B   
3:  CW/CCW Pulse input 

 
pls_logic: Logic of encoder feedback pulse 

pls_logic=0: Normal Low  
pls_logic=1: Normal High 



YA7233-0/6E 

- 104 - 

Src:  Feedback counter source 
0: External Feedback pulse  
1: Command pulse  

 
@Return Code 

ERR_NoError : 0 
 



YA7233-0/6E 

- 105 - 

6.5 Velocity Mode Operation 
 
@Function Name 
_8443_tv_move  - Accelerate an axis to a constant velocity with trapezoidal profile 
_8443_sv_move  - Accelerate an axis to a constant velocity with S-curve profile 
_8443_v_change  - Change speed on the fly (speed override) 
_8443_sd_stop  - Decelerate to stop 
_8443_emg_stop  - Immediate stop 
_8443_fix_speed_range  - Define the speed range  
_8443_unfix_speed_range - Release the speed range constrain 
_8443_get_current_speed - Obtain the current speed 
_8443_verify_speed  - Obtain the minimum and maximum accel/decel time in a speed profile 
 
@Function Description 
_8443_tv_move: 

This function is to accelerate an axis to the specified constant velocity with trapezoidal profile. The axis 
will continue to run at a constant velocity until the velocity is changed or the axis is commanded to stop. 
The direction is determined by the sign of velocity parameter. 

_8443_sv_move: 
This function is to accelerate an axis to the specified constant velocity with S-curve profile. The axis will 
continue to run at a constant velocity until the velocity is changed or the axis is commanded to stop. 
The direction is determined by the sign of velocity parameter. 

_8443_v_change: 
This function changes the moving velocity with trapezoidal profile or S-curve profile. Before calling this 
function, it is necessary to define the speed range by _8443_fix_speed_range. _8443_v_change is 
also applicable in pre-set motion. 
Note: The velocity profile is decided by the original motion profile. When using in S-curve, please set 
the motion to be pure S-curve, which has no linear part. There are some limitations for this function: 
please refer to section 4.6.1. 

_8443_sd_stop: 
This function is used to decelerate an axis to stop with trapezoidal profile or S-curve profile. This 
function is also useful when preset operation (both trapezoidal and S-curve motion), manual operation, 
or home return function is performed.  
Note: The velocity profile is decided by the original motion profile. 

_8443_emg_stop: 
This function is used to immediately stop an axis. This function is also useful when preset operation 
(both trapezoidal and S-curve motion), manual operation or home return function is performed. 

_8443_fix_speed_range: 
This function is used to define the speed range. It should be called before starting operation that 
contains a velocity change. 

_8443_unfix_speed_range: 
This function is used to release the speed range constrain. 

_8443_get_current_speed: 
This function is used to read the current pulse output rate of a specified axis. It is applicable in any time 
and in any operating mode. 

_8443_verify_speed: 
Obtain the minimum and maximum accel/decel time in a speed profile. 

 



YA7233-0/6E 

- 106 - 

@Syntax 
C/C++ (Windows XP/7/8) 

I16 _8443_tv_move(I16 AxisNo, F64 StrVel, F64 MaxVel, F64 Tacc); 
I16 _8443_sv_move(I16 AxisNo, F64 StrVel, F64 MaxVel, F64 Tacc, F64 SVacc); 
I16 _8443_v_change(I16 AxisNo, F64 NewVel, F64 Tacc);  
I16 _8443_sd_stop(I16 AxisNo,F64 Tdec); 
I16 _8443_emg_stop(I16 AxisNo); 
F64 _8443_fix_speed_range(I16 AxisNo, F64 MaxVel);  
I16 _8443_unfix_speed_range(I16 AxisNo); 
I16 _8443_get_current_speed(I16 AxisNo, F64 *speed); 
F64 _8443_verify_speed(F64 StrVel,F64 MaxVel,F64 *minAccT,F64 *maxAccT, F64 MaxSpeed); 

 
VB.NET (Windows XP/7/8) 

B_8443_tv_move(ByVal AxisNo As Short, ByVal StrVel As Double, ByVal MaxVel As Double, ByVal 
Tacc As Double) As Short 
B_8443_sv_move(ByVal AxisNo As Short, ByVal StrVel As Double, ByVal MaxVel As Double, ByVal 
Tacc As Double, ByVal SVacc As Double) As Short 
B_8443_v_change(ByVal AxisNo As Short, ByVal NewVel As Double, ByVal Time As Double) As Short 
B_8443_sd_stop(ByVal AxisNo As Short, ByVal Tdec As Double) As Short 
B_8443_emg_stop(ByVal AxisNo As Short) As Short 
B_8443_fix_speed_range(ByVal AxisNo As Short, ByVal MaxVel As Double) As Short 
B_8443_unfix_speed_range(ByVal AxisNo As Short) As Short 
B_8443_get_current_speed (ByVal AxisNo As Short, Speed As Double) As Short 
B_8443_verify_speed(ByVal StrVel As Double, ByVal MaxVel As Double, ByRef minAccT As Double, 
ByRef maxAccT As Double, ByVal MaxSpeed As Double) As Double 
 

C# (Windows XP/7/8) 
Int16 _8443_tv_move(Int16  AxisNo, Double StrVel, Double MaxVel, Double Tacc); 
Int16 _8443_sv_move(Int16  AxisNo, Double StrVel, Double MaxVel, Double Tacc, Double SVacc); 
Int16 _8443_v_change(Int16  AxisNo, Double NewVel, Double Time); 
Int16 _8443_sd_stop(Int16  AxisNo,Double Tdec); 
Int16 _8443_emg_stop(Int16  AxisNo); 
Int16 _8443_fix_speed_range(Int16  AxisNo, Double MaxVel); 
Int16 _8443_unfix_speed_range(Int16  AxisNo); 
Int16 _8443_get_current_speed(Int16 AxisNo, ref Double speed); 
Double _8443_verify_speed(Double StrVel,Double MaxVel,ref Double minAccT,ref Double maxAccT, 
Double MaxSpeed); 

 
@Argument 

AxisNo: Axis number designated to move or stop (0 starts)  
StrVel: Starting velocity (unit: pps) 
MaxVel: Maximum velocity (unit: pps) 
Tacc: Specified acceleration time (unit: sec) 
SVacc: Specified velocity interval in which S-curve acceleration is performed. 

Note: SVacc = 0; S-curve without linear parts. 
NewVel: New velocity (unit: pps) 
Time: 
Tdec: Specified deceleration time (unit: sec) 
*Speed: Variable to save the current speed (speed range: 0 ~ 6553500)  
minAccT: Minimum acceleration time (sec) 
maxAccT: Maximum acceleration time (sec) 
MaxSpeed: The speed set by _8443_verify_speed (pps) 
 
@Return Code 

ERR_NoError : 0 
ERR_SpeedError : 11 
ERR_SpeedChangeError : 29 
ERR_SlowDownPointError : 16 
ERR_AxisAlreadyStop : 14 

 



YA7233-0/6E 

- 107 - 

6.6 Single Axis Position Operation 
 
@Function Name 
_8443_start_tr_move Begin a relative trapezoidal profile operation.  
_8443_start_ta_move Begin an absolute trapezoidal profile operation. 
_8443_start_sr_move Begin a relative S-curve profile operation. 
_8443_start_sa_move Begin an absolute S-curve profile move operation. 
_8443_set_move_ratio Set the ratio of command pulse and feedback pulse. 
_8443_p_change Change position on the fly (target position override). 
_8443_set_pcs_logic Set the logic of PCS (position change signal) terminal.  
_8443_set_sd_pin Set the SD / PCS terminals. 
_8443_backlash_comp Set the backlash compensating pulse for a compensation operation. 
_8443_suppress_vibration Set the vibration suppress timing. 
_8443_set_idle_pulse Set the suppress vibration idle pulse counts. 
 
@Function Description 
Note: The moving direction is determined by the sign of Pos or Dist parameter. If the moving distance is 

too short to reach a specified velocity, the controller will automatically lower the MaxVel, and the 
Tacc, Tdec, SVacc, SVdec, will also become shorter while the dV/dt (acceleration / deceleration) 
and d(dV/dt)/dt (jerk) are kept unchanged. 

_8443_start_tr_move: 
This function causes the axis to accelerate from starting velocity, slew at constant velocity, and 
decelerate to stop at a relative distance with trapezoidal profile. The acceleration and deceleration time 
is specified independently. It will not let the program wait for motion completion but immediately will 
return the control to the program. 

_8443_start_ta_move: 
This function causes the axis to accelerate from starting velocity, slew at constant velocity, and 
decelerate to stop at a specified absolute position with trapezoidal profile. The acceleration and 
deceleration time is specified independently. It will not let the program wait for motion completion but 
immediately will return the control to the program. 

_8443_start_sr_move: 
This function causes the axis to accelerate from starting velocity, slew at constant velocity, and 
decelerate to stop at the relative distance with S-curve profile. The acceleration and deceleration time 
is specified independently. It will not let the program wait for motion completion but immediately will 
return the control to the program. 

_8443_start_sa_move: 
This function causes the axis to accelerate from starting velocity, slew at constant velocity, and 
decelerate to stop at the specified absolute position with S-curve profile. The acceleration and 
deceleration time is specified independently. It will not let the program wait for motion completion but 
immediately will return control to the program. 

_8443_set_move_ratio: 
This function configures scale factors (ratio between command pulse and feedback pulse) at a 
specified axis. Usually, the axes only need scale factors if their mechanical resolutions are different. 
For example, if the resolution of feedback sensors is two times resolution of command pulse, then ratio 
= 2. 
Please set other than “0”.  

_8443_p_change: 
This function is used to change a target position on the fly in motion. There are some limitations for this 
function. Please refer to section 4.6.2. 

_8443_set_pcs_logic: 
This function is used to set the logic of Position Change Signal (PCS). The PCS share the same 
terminal with SD signal. Only when the SD/PCS terminal was set to PCS by _8443_set_sd_pin, this 
_8443_set_pcs_logic function becomes effective. 

_8443_set_sd_pin: 
This function is used to set an operating mode of SD terminal. The SD terminal may be used either as 
Slow-Down signal input or as Position Change Signal (PCS) input. Please refer to section 4.3.1 

_8443_backlash_comp: 
Whenever a direction change is occurred, PPCIe-8443 will output backlash corrective pulses before 
sending commands. This function is used to set the compensation pulse numbers.  



YA7233-0/6E 

- 108 - 

_8443_suppress_vibration: 
This function is used to suppress vibrations in a mechanical system by outputting a single pulse for 
negative direction and a single pulse for positive direction right after a completion of command 
operation.  

 
 

(+) Direction 
 
 
(−) Direction 
 
 
 
 
 T1: Reverse Time; T2: Forward Time 
 

_8443_set_idle_pulse: 
This idling pulse is to control the vibration when a machine is set up. Acceleration starts after several 
idling pulses are outputted at the start speed. 
Attention: 
Note: To use this function, set 2 - 7 as the set value. Please set 0 or 1 when not using.  

 

 

When  
N = 0 or 1  

When  
n = 3  

Acceleration starts at the 0th pulse  

Acceleration starts at the 3rd pulse 
Idling pulse output : n-1 = 2 pulse 

T2/2 

Final Pulse 

T1/2 

T1 T2 



YA7233-0/6E 

- 109 - 

@Syntax 
C/C++ (Windows/7/8) 

I16 _8443_start_tr_move(I16 AxisNo, F64 Dist, F64 StrVel, F64 MaxVel, F64 Tacc,F64 Tdec); 
I16 _8443_start_ta_move(I16 AxisNo, F64 Pos, F64 StrVel, F64 MaxVel, F64 Tacc, F64 Tdec); 
I16 _8443_start_sr_move(I16 AxisNo, F64 Dist, F64 StrVel, F64 MaxVel, F64 Tacc, F64 Tdec, F64 
SVacc, F64 SVdec); 
I16 _8443_start_sa_move(I16 AxisNo, F64 Pos, F64 StrVel, F64 MaxVel, F64 Tacc, F64 Tdec, F64 
SVacc, F64 SVdec);  
I16 _8443_set_move_ratio(I16 AxisNo, F64 move_ratio);  
I16 _8443_p_change(I16 AxisNo, F64 NewPos); 
I16 _8443_set_pcs_logic(I16 AxisNo, I16 pcs_logic);  
I16 _8443_set_sd_pin(I16 AxisNo, I16 Type); 
I16 _8443_backlash_comp(I16 AxisNo, I16 BCompPulse, I16 Mode);  
I16 _8443_suppress_vibration(I16 AxisNo, U16 ReverseTime, U16 ForwardTime);  
I16 _8443_set_idle_pulse(I16 AxisNo, I16 idl_pulse); 

 
VB.NET (Windows XP/7/8) 

B_8443_start_tr_move(ByVal AxisNo As Short, ByVal Dist As Double, ByVal StrVel As Double, ByVal 
MaxVel As Double, ByVal Tacc As Double, ByVal Tdec As Double) As Short 
B_8443_start_ta_move(ByVal AxisNo As Short, ByVal Pos As Double, ByVal StrVel As Double, ByVal 
MaxVel As Double, ByVal Tacc As Double, ByVal Tdec As Double) As Short 
B_8443_start_sr_move(ByVal AxisNo As Short, ByVal Dist As Double, ByVal StrVel As Double, ByVal 
MaxVel As Double, ByVal Tacc As Double, ByVal Tdec As Double, ByVal SVacc As Double, ByVal 
SVdec As Double) As Short 
B_8443_start_sa_move(ByVal AxisNo As Short, ByVal Pos As Double, ByVal StrVel As Double, ByVal 
MaxVel As Double, ByVal Tacc As Double, ByVal Tdec As Double, ByVal SVacc As Double, ByVal 
SVdec As Double) As Short 
B_8443_set_move_ratio(ByVal AxisNo As Short, ByVal move_ratio As Double) As Short 
B_8443_p_change(ByVal AxisNo As Short, ByVal NewPos As Double) As Short 
B_8443_set_pcs_logic(ByVal AxisNo As Short, ByVal pcs_logic As Short) As Short 
B_8443_set_sd_pin(ByVal AxisNo As Short, ByVal Type As Short) As Short 
B_8443_backlash_comp(ByVal AxisNo As Short, ByVal BCompPulse As Short, ByVal Mode As Short) 
As Short 
B_8443_suppress_vibration(ByVal AxisNo As Short, ByVal ReverseTime As Short, ByVal 
ForwardTime As Short) As Short 
B_8443_set_idle_pulse(ByVal AxisNo As Short, ByVal idl_pulse As Short) As Short 
 

C# (Windows XP/7/8) 
Int16 _8443_start_tr_move(Int16  AxisNo, Double Dist, Double StrVel, Double MaxVel, Double 
Tacc,Double Tdec); 
Int16 _8443_start_ta_move(Int16  AxisNo, Double Pos, Double StrVel, Double MaxVel, Double Tacc, 
Double Tdec); 
Int16 _8443_start_sr_move(Int16  AxisNo, Double Dist, Double StrVel, Double MaxVel, Double Tacc, 
Double Tdec, Double SVacc, Double SVdec); 
Int16 _8443_start_sa_move(Int16  AxisNo, Double Pos, Double StrVel, Double MaxVel, Double Tacc, 
Double Tdec, Double SVacc, Double SVdec); 
Int16 _8443_set_move_ratio(Int16 AxisNo, Double move_ratio); 
Int16 _8443_p_change(Int16  AxisNo, Double NewPos); 
Int16 _8443_set_pcs_logic(Int16 AxisNo, Int16 pcs_logic); 
Int16 _8443_set_sd_pin(Int16 AxisNo, Int16 Type); 
Int16 _8443_backlash_comp(Int16  AxisNo, Int16  BCompPulse, Int16  Mode); 
Int16 _8443_suppress_vibration(Int16  AxisNo, UInt16 ReverseTime, UInt16 ForwardTime); 
Int16 _8443_set_idle_pulse(Int16  AxisNo, Int16  idl_pulse); 



YA7233-0/6E 

- 110 - 

@Argument 
AxisNo: Axis number designated to move or change position (0 starts) 
Dist: Specified relative distance to move 
Pos: Specified absolute position to move 
StrVel: Starting velocity of a velocity profile (pps) 
MaxVel: Maximum velocity of a velocity profile (pps) 
Tacc: Specified acceleration time (s) 
Tdec: Specified acceleration time (s) 
SVacc: Specified velocity interval when S-curve acceleration is performed. 

Note: SVacc = 0; S-curve without linear part 
SVdec: Specified velocity interval when S-curve deceleration is performed. 

Note: SVacc = 0; S-curve without linear part 
move_ratio: Ratio of (feedback resolution): (command resolution) 

  Please set other than “0”. 
NewPos: Specified new absolute position per the position on the fly (position override).  
pcs_logic: Specify the PCS logic setting:  

0: Active Low 
1: Active High 

Type: Define the SD/PCS terminal usage: 
0: SD 
1: PCS 

BcompPulse: Specified the number of corrective pulse (backlash compensation) 
Mode: Bbacklash compensation setting 

0: OFF 
1: Backlash compensation enabled  
2: Slip correction 

ReverseTime: Specified Reverse Time 
ForwardTime: Specified Forward Time 
idl_pulse: Idl_pulse (Idling pulse) = 0 ~ 7 (Setting range) 
 
@Return Code 

ERR_NoError : 0 
ERR_SpeedError : 11 
ERR_PChangeSlowDownPointError : 28 
ERR_MoveRatioError : 12 

 



YA7233-0/6E 

- 111 - 

6.7 Linear Interpolation Operation 
 
@Function Name 
_8443_start_tr_move_xy  - Relative 2-axis linear interpolation for X & Y, with trapezoidal profile 
_8443_start_ta_move_xy  - Absolute 2-axis linear interpolation for X & Y, with trapezoidal profile 
_8443_start_sr_move_xy  - Relative 2-axis linear interpolation for X & Y, with S-curve profile 
_8443_start_sa_move_xy  - Absolute 2-axis linear interpolation for X & Y, with S-curve profile 
_8443_start_tr_move_zu  - Relative 2-axis linear interpolation for Z & U, with trapezoidal profile 
_8443_start_ta_move_zu  - Absolute 2-axis linear interpolation for Z & U, with trapezoidal profile 
_8443_start_sr_move_zu  - Relative 2-axis linear interpolation for Z & U, with S-curve profile  
_8443_start_sa_move_zu  - Absolute 2-axis linear interpolation for Z & U, with S-curve profile 
_8443_start_tr_line2  - Relative 2-axis linear interpolation for any 2 axes, with trapezoidal profile 
_8443_start_sr_line2  - Relative 2-axis linear interpolation for any 2 axes, with S-curve profile 
_8443_start_ta_line2  - Absolute 2-axis linear interpolation for any 2 axes, with trapezoidal profile 
_8443_start_sa_line2  - Absolute 2-axis linear interpolation for any 2 axes, with S-curve profile 
_8443_start_tr_line3  - Relative 3-axis linear interpolation with trapezoidal profile 
_8443_start_sr_line3  - Relative 3-axis linear interpolation with S-curve profile 
_8443_start_ta_line3  - Absolute 3-axis linear interpolation with trapezoidal profile 
_8443_start_sa_line3  - Absolute 3-axis linear interpolation with S-curve profile 
_8443_start_tr_line4  - Relative 3-axis linear interpolation with trapezoidal profile 
_8443_start_sr_line4  - Relative 4-axis linear interpolation with S-curve profile 
_8443_start_ta_line4  - Absolute 4-axis linear interpolation with trapezoidal profile 
_8443_start_sa_line4  - Absolute 4-axis linear interpolation with S-curve profile,  
_8443_set_line_move_mode  - Set continuous line interpolation mode 
_8443_set_axis_option  - Choose the interpolation speed mode 
 
@Function Description 
 

Function No. of axis Speed  
profile 

Relative position/ 
Absolute position Target axis  

_8443_start_tr_move_xy 2 T R Axis 0 and 1  
_8443_start_ta_move_xy 2 T A Axis 0 and 1 
_8443_start_sr_move_xy 2 S R Axis 0 and 1 
_8443_start_sa_move_xy 2 S A Axis 0 and 1 
_8443_start_tr_move_zu 2 T R Axis 2 and 3 
_8443_start_ta_move_zu 2 T A Axis 2 and 3 
_8443_start_sr_move_zu 2 S R Axis 2 and 3 
_8443_start_sa_move_zu 2 S A Axis 2 and 3 
_8443_start_tr_line2 2 T R Any two axes  
_8443_start_ta_line2 2 T A Any two axes 
_8443_start_sr_line2 2 S R Any two axes 
_8443_start_sa_line2 2 S A Any two axes 
_8443_start_tr_line3 3 T R Any three axes 
_8443_start_ta_line3 3 T A Any three axes 
_8443_start_sr_line3 3 S R Any three axes 
_8443_start_sa_line3 3 S A Any three axes 
_8443_start_tr_line4 4 T R Four axes 
_8443_start_ta_line4 4 T A Four axes 
_8443_start_sr_line4 4 S R Four axes 
_8443_start_sa_line4 4 S A Four axes 
T: Linear accel/ decel operation          S: S-curve accel / decel operation 
R: Relative position specification mode  A: Absolute position specification mode 



YA7233-0/6E 

- 112 - 

_8443_set_line_move_mode(): 
This is the linear interpolation mode in 2 to 4 axis linear interpolation. If this mode is set to continuous 
("1"), it will not stop until the continuous interpolation mode is entered and the stop function is written. 
When it is "0", it becomes positioning interpolation mode and stops when reaching the commanded 
target position / movement amount. 
 

 
@Syntax 
C/C++(DOS, (Windows XP/7/8) 

I16 _8443_start_tr_move_xy(I16 CardNo, F64 DistX, F64 DistY, F64 StrVel, F64 MaxVel, F64 Tacc, 
F64 Tdec); 
I16 _8443_start_ta_move_xy(I16 CardNo, F64 PosX, F64 PosY, F64 StrVel, F64 MaxVel, F64 Tacc, 
F64 Tdec); 
I16 _8443_start_sr_move_xy(I16 CardNo, F64 DistX, F64 DistY, F64 StrVel, F64 MaxVel, F64 Tacc, 
F64 Tdec, F64 SVacc, F64 SVdec); 
I16 _8443_start_sa_move_xy(I16 CardNo, F64 PosX, F64 PosY, F64 StrVel, F64 MaxVel, F64 Tacc, 
F64 Tdec, F64 SVacc, F64 SVdec); 
I16 _8443_start_tr_move_zu(I16 CardNo, F64 DistX, F64 DistY, F64 StrVel, F64 MaxVel, F64 Tacc, 
F64 Tdec); 
I16 _8443_start_ta_move_zu(I16 CardNo, F64 PosX, F64 PosY, F64 StrVel, F64 MaxVel, F64 Tacc, 
F64 Tdec); 
I16 _8443_start_sr_move_zu(I16 CardNo, F64 DistX, F64 DistY, F64 StrVel, F64 MaxVel, F64 Tacc, 
F64 Tdec, F64 SVacc, F64 SVdec); I16 _8443_start_sa_move_zu(I16 CardNo, F64 PosX, F64 PosY, 
F64 StrVel, F64 MaxVel, F64 Tacc, F64 Tdec, F64 SVacc, F64 SVdec); 
I16 _8443_start_tr_line2(I16 CardNo, I16 *AxisArray, F64 DistX, F64 DistY, F64 StrVel, F64 MaxVel, 
F64 Tacc, F64 Tdec); 
I16 _8443_start_ta_line2(I16 CardNo, I16 *AxisArray, F64 PosX, F64 PosY, F64 StrVel, F64 MaxVel, 
F64 Tacc, F64 Tdec); 
I16 _8443_start_sr_line2(I16 CardNo, I16 *AxisArray, F64 DistX, F64 DistY, F64 StrVel, F64 MaxVel, 
F64 Tacc, F64 Tdec, F64 SVacc, F64 SVdec); 
I16 _8443_start_sa_line2(I16 CardNo, I16 *AxisArray, F64 PosX, F64 PosY, F64 StrVel, F64 MaxVel, 
F64 Tacc, F64 Tdec, F64 SVacc, F64 SVdec); 
I16 _8443_start_tr_line3(I16 CardNo, I16 *AxisArray, F64 DistX, F64 DistY, F64 DistZ, F64 StrVel, F64 
MaxVel, F64 Tacc, F64 Tdec); 
I16 _8443_start_ta_line3(I16 CardNo, I16 *AxisArray, F64 PosX, F64 PosY, F64 PosZ, F64 StrVel, F64 
MaxVel, F64 Tacc, F64 Tdec); 
I16 _8443_start_sr_line3(I16 CardNo, I16 *AxisArray, F64 DistX, F64 DistY, 
F64 DistZ, F64 StrVel, F64 MaxVel, F64 Tacc, F64 Tdec, F64 SVacc, F64 SVdec); 
I16 _8443_start_sa_line3(I16 CardNo, I16 *AxisArray, F64 PosX, F64 PosY, F64 PosZ, F64 StrVel, 
F64 MaxVel, F64 Tacc, F64 Tdec, F64 SVacc, F64 SVdec); 
I16 _8443_start_tr_line4(I16 CardNo, F64 DistX, F64 DistY, F64 DistZ, F64 DistU, F64 StrVel, F64 
MaxVel, F64 Tacc, F64 Tdec); 
I16 _8443_start_ta_line4(I16 CardNo, F64 PosX, F64 PosY, F64 PosZ, F64 PosU, F64 StrVel, F64 
MaxVel, F64 Tacc, F64 Tdec); 
I16 _8443_start_sr_line4(I16 CardNo, F64 DistX, F64 DistY, F64 DistZ, F64 DistU, F64 StrVel, F64 
MaxVel, F64 Tacc, F64 Tdec, F64 SVacc, F64 SVdec); 
I16 _8443_start_sa_line4(I16 CardNo, F64 PosX, F64 PosY, F64 PosZ, F64 PosU, F64 StrVel, F64 
MaxVel, F64 Tacc, F64 Tdec, F64 SVacc, F64 SVdec); 
I16 _8443_set_line_move_mode(I16 AxisNo, I16 Mode);  
I16 _8443_set_axis_option(I16 AxisNo, I16 option); 

 



YA7233-0/6E 

- 113 - 

VB.NET (Windows XP/7/8) 
B_8443_start_tr_move_xy(ByVal CardNo As Short, ByVal DistX As Double, ByVal DistY As Double, 
ByVal StrVel As Double, ByVal MaxVel As Double, ByVal Tacc As Double, ByVal Tdec As Double) As 
Short 
B_8443_start_ta_move_xy(ByVal CardNo As Short, ByVal PosX As Double, ByVal PosY As Double, 
ByVal StrVel As Double, ByVal MaxVel As Double, ByVal Tacc As Double, ByVal Tdec As Double) As 
Short 
B_8443_start_sr_move_xy(ByVal CardNo As Short, ByVal DistX As Double, ByVal DistY As Double, 
ByVal StrVel As Double, ByVal MaxVel As Double, ByVal Tacc As Double, ByVal Tdec As Double, 
ByVal SVacc As Double, ByVal SVdec As Double) As Short 
B_8443_start_sa_move_xy(ByVal CardNo As Short, ByVal PosX As Double, ByVal PosY As Double, 
ByVal StrVel As Double, ByVal MaxVel As Double, ByVal Tacc As Double, ByVal Tdec As Double, 
ByVal SVacc As Double, ByVal SVdec As Double) As Short 
B_8443_start_tr_move_zu(ByVal CardNo As Short, ByVal DistX As Double, ByVal DistY As Double, 
ByVal StrVel As Double, ByVal MaxVel As Double, ByVal Tacc As Double, ByVal Tdec As Double) As 
Short 
B_8443_start_ta_move_zu(ByVal CardNo As Short, ByVal PosX As Double, ByVal PosY As Double, 
ByVal StrVel As Double, ByVal MaxVel As Double, ByVal Tacc As Double, ByVal Tdec As Double) As 
Short 
B_8443_start_sr_move_zu(ByVal CardNo As Short, ByVal DistX As Double, ByVal DistY As Double, 
ByVal StrVel As Double, ByVal MaxVel As Double, ByVal Tacc As Double, ByVal Tdec As Double, 
ByVal SVacc As Double, ByVal SVdec As Double) As Short 
B_8443_start_sa_move_zu(ByVal CardNo As Short, ByVal PosX As Double, ByVal PosY As Double, 
ByVal StrVel As Double, ByVal MaxVel As Double, ByVal Tacc As Double, ByVal Tdec As Double, 
ByVal SVacc As Double, ByVal SVdec As Double) As Short 
 
B_8443_start_tr_line2(ByVal CardNo As Short, ByVal AxisArray() As Short, ByVal DistX As Double, 
ByVal DistY As Double, ByVal StrVel As Double, ByVal MaxVel As Double, ByVal Tacc As Double, 
ByVal Tdec As Double) As Short 
B_8443_start_ta_line2(ByVal CardNo As Short, ByVal AxisArray() As Short, ByVal PosX As Double, 
ByVal PosY As Double, ByVal StrVel As Double, ByVal MaxVel As Double, ByVal Tacc As Double, 
ByVal Tdec As Double) As Short 
B_8443_start_sr_line2(ByVal CardNo As Short, ByVal AxisArray() As Short, ByVal DistX As Double, 
ByVal DistY As Double, ByVal StrVel As Double, ByVal MaxVel As Double, ByVal Tacc As Double, 
ByVal Tdec As Double, ByVal SVacc As Double, ByVal SVdec As Double) As Short 
B_8443_start_sa_line2(ByVal CardNo As Short, ByVal AxisArray() As Short, ByVal PosX As Double, 
ByVal PosY As Double, ByVal StrVel As Double, ByVal MaxVel As Double, ByVal Tacc As Double, 
ByVal Tdec As Double, ByVal SVacc As Double, ByVal SVdec As Double) As Short 
 
B_8443_start_tr_line3(ByVal CardNo As Short, ByVal AxisArray() As Short, ByVal DistX As Double, 
ByVal DistY As Double, ByVal DistZ As Double, ByVal StrVel As Double, ByVal MaxVel As Double, 
ByVal Tacc As Double, ByVal Tdec As Double) As Short 
B_8443_start_ta_line3(ByVal CardNo As Short, ByVal AxisArray() As Short, ByVal PosX As Double, 
ByVal PosY As Double, ByVal PosZ As Double, ByVal StrVel As Double, ByVal MaxVel As Double, 
ByVal Tacc As Double, ByVal Tdec As Double) As Short 
B_8443_start_sr_line3(ByVal CardNo As Short, ByVal AxisArray() As Short, ByVal DistX As Double, 
ByVal DistY As Double, ByVal DistZ As Double, ByVal StrVel As Double, ByVal MaxVel As Double, 
ByVal Tacc As Double, ByVal Tdec As Double, ByVal SVacc As Double, ByVal SVdec As Double) As 
Short 
B_8443_start_sa_line3(ByVal CardNo As Short, ByVal AxisArray() As Short, ByVal PosX As Double, 
ByVal PosY As Double, ByVal PosZ As Double, ByVal StrVel As Double, ByVal MaxVel As Double, 
ByVal Tacc As Double, ByVal Tdec As Double, ByVal SVacc As Double, ByVal SVdec As Double) As 
Short 
 
B_8443_start_tr_line4(ByVal CardNo As Short, ByVal DistX As Double, ByVal DistY As Double, ByVal 
DistZ As Double, ByVal DistU As Double, ByVal StrVel As Double, ByVal MaxVel As Double, ByVal 
Tacc As Double, ByVal Tdec As Double) As Short 
B_8443_start_ta_line4(ByVal CardNo As Short, ByVal PosX As Double, ByVal PosY As Double, ByVal 
PosZ As Double, ByVal PosU As Double, ByVal StrVel As Double, ByVal MaxVel As Double, ByVal 
Tacc As Double, ByVal Tdec As Double) As Short 



YA7233-0/6E 

- 114 - 

B_8443_start_sr_line4(ByVal CardNo As Short, ByVal DistX As Double, ByVal DistY As Double, ByVal 
DistZ As Double, ByVal DistU As Double, ByVal StrVel As Double, ByVal MaxVel As Double, ByVal 
Tacc As Double, ByVal Tdec As Double, ByVal SVacc As Double, ByVal SVdec As Double) As Short 
B_8443_start_sa_line4(ByVal CardNo As Short, ByVal PosX As Double, ByVal PosY As Double, ByVal 
PosZ As Double, ByVal PosU As Double, ByVal StrVel As Double, ByVal MaxVel As Double, ByVal 
Tacc As Double, ByVal Tdec As Double, ByVal SVacc As Double, ByVal SVdec As Double) As Short 
 
B_8443_set_line_move_mode(ByVal AxisNo As Short, ByVal Mode As Short) As Short 
B_8443_set_axis_option(ByVal AxisNo As Short, ByVal OptionItem As Short) As Short 
 

C# (Windows XP/7/8) 
Int16 _8443_start_tr_move_xy(Int16  CardNo, Double DistX, Double DistY, Double StrVel, Double 
MaxVel, Double Tacc, Double Tdec); 
Int16 _8443_start_ta_move_xy(Int16  CardNo, Double PosX, Double PosY, Double StrVel, Double 
MaxVel, Double Tacc, Double Tdec); 
Int16 _8443_start_sr_move_xy(Int16  CardNo, Double DistX, Double DistY, Double StrVel, Double 
MaxVel, Double Tacc, Double Tdec, Double SVacc, Double SVdec); 
Int16 _8443_start_sa_move_xy(Int16  CardNo, Double PosX, Double PosY, Double StrVel, Double 
MaxVel, Double Tacc, Double Tdec, Double SVacc, Double SVdec); 
Int16 _8443_start_tr_move_zu(Int16  CardNo, Double DistX, Double DistY, Double StrVel, Double 
MaxVel, Double Tacc, Double Tdec); 
Int16 _8443_start_ta_move_zu(Int16  CardNo, Double PosX, Double PosY, Double StrVel, Double 
MaxVel, Double Tacc, Double Tdec); 
Int16 _8443_start_sr_move_zu(Int16  CardNo, Double DistX, Double DistY, Double StrVel, Double 
MaxVel, Double Tacc, Double Tdec, Double SVacc, Double SVdec); 
Int16 _8443_start_sa_move_zu(Int16  CardNo, Double PosX, Double PosY, Double StrVel, Double 
MaxVel, Double Tacc, Double Tdec, Double SVacc, Double SVdec); 
Int16 _8443_start_tr_line2(Int16  CardNo,ref Int16  AxisArray, Double DistX, Double DistY, Double 
StrVel, Double MaxVel, Double Tacc, Double Tdec); 
Int16 _8443_start_sr_line2(Int16  CardNo,ref Int16  AxisArray, Double DistX, Double DistY, Double 
StrVel, Double MaxVel, Double Tacc, Double Tdec, Double SVacc, Double SVdec); 
Int16 _8443_start_ta_line2(Int16  CardNo,ref Int16  AxisArray, Double PosX, Double PosY, Double 
StrVel, Double MaxVel, Double Tacc, Double Tdec); 
Int16 _8443_start_sa_line2(Int16  CardNo,ref Int16  AxisArray, Double PosX, Double PosY, Double 
StrVel, Double MaxVel, Double Tacc, Double Tdec, Double SVacc, Double SVdec); 
Int16 _8443_start_tr_line3(Int16  CardNo,ref Int16 AxisArray, Double DistX, Double DistY, Double 
DistZ, Double StrVel, Double MaxVel, Double Tacc, Double Tdec); 
Int16 _8443_start_sr_line3(Int16  CardNo,ref Int16 AxisArray, Double DistX, Double DistY, Double 
DistZ, Double StrVel, Double MaxVel, Double Tacc, Double Tdec, Double SVacc, Double SVdec); 
Int16 _8443_start_ta_line3(Int16  CardNo,ref Int16 AxisArray, Double PosX, Double PosY, Double 
PosZ, Double StrVel, Double MaxVel, Double Tacc, Double Tdec); 
Int16 _8443_start_sa_line3(Int16  CardNo,ref Int16 AxisArray, Double PosX, Double PosY, Double 
PosZ, Double StrVel, Double MaxVel, Double Tacc, Double Tdec, Double SVacc, Double SVdec); 
Int16 _8443_start_tr_line4(Int16  CardNo, Double DistX, Double DistY, Double DistZ, Double DistU, 
Double StrVel, Double MaxVel, Double Tacc, Double Tdec); 
Int16 _8443_start_sr_line4(Int16  CardNo, Double DistX, Double DistY, Double DistZ, Double DistU, 
Double StrVel, Double MaxVel, Double Tacc, Double Tdec, Double SVacc, Double SVdec); 
Int16 _8443_start_ta_line4(Int16  CardNo, Double PosX, Double PosY, Double PosZ, Double PosU, 
Double StrVel, Double MaxVel, Double Tacc, Double Tdec); 
Int16 _8443_start_sa_line4(Int16  CardNo, Double PosX, Double PosY, Double PosZ, Double PosU, 
Double StrVel, Double MaxVel, Double Tacc, Double Tdec, Double SVacc, Double SVdec); 
Int16 _8443_set_line_move_mode(Int16  AxisNo, Int16  Mode); 
Int16 _8443_set_axis_option(Int16  AxisNo, Int16  option); 

 



YA7233-0/6E 

- 115 - 

@Argument 
CardNo: Card number designated to perform linear interpolation (0 starts) 
DistX: Specified relative distance of axis 0 operation 
DistY: Specified relative distance of axis 1 operation 
DistZ: Specified relative distance of axis 2 operation 
DistU: Specified relative distance of axis 3 operation) 
PosX: Specified absolute position of axis 0 operation) 
PosY: Specified absolute position of axis 1 operation) 
PosZ: Specified absolute position of axis 2 operation) 
PosU: Specified absolute position of axis 3 operation) 
StrVel: Starting velocity in a velocity profile (pps) 
MaxVel: Maximum velocity in a velocity profile (pps) 
Tacc: Specified acceleration time (sec) 
Tdec: Specified acceleration time (sec) 
SVacc: Specified velocity interval in which S-curve acceleration is performed. 

Note: SVacc = 0, for pure S-curve 
SVdec: Specified velocity interval when S-curve deceleration is performed. 

Note: SVacc = 0; S-curve without linear part for pure S-curve 
AxisArray: Array of the axis numbers to perform interpolation. 

Example: Int AxisArray[2] = {0, 2}; // axis 0 and 2 
Int AxisArray[3] = {0, 1, 3}; // axis 0, 1 and 3 

Note: Be sure to store axis numbers in the array in ascending order. 
Mode: Interporation mode 

0: Positioning line interpolation mode  
1: Continuous line interpolation mode  

Option: 
0: Default line move mode 
1: Composite speed constant mode 

 
@Return Code 

ERR_NoError : 0 
ERR_SpeedError : 11 
ERR_AxisArrayError : 15 



YA7233-0/6E 

- 116 - 

6.8 Circular Interpolation Operation 
 
@Function Name 
_8443_start_r_arc_xy  - Begin a relative circular interpolation for X & Y 
_8443_start_a_arc_xy  - Begin an absolute circular interpolation for X & Y 
_8443_start_r_arc_zu  - Begin a relative circular interpolation for Z & U 
_8443_start_a_arc_zu  - Begin an absolute circular interpolation for Z & U 
_8443_start_r_arc2  - Begin a relative circular interpolation for any 2 axes 
_8443_start_a_arc2  - Begin an absolute circular interpolation for any 2 axes 
_8443_start_tr_arc_xy  - Begin a Trapezoidal relative circular interpolation for X & Y 
_8443_start_ta_arc_xy  - Begin a Trapezoidal absolute circular interpolation for X & Y 
_8443_start_sr_arc_xy  - Begin an S-curve relative circular interpolation for X & Y 
_8443_start_sa_arc_xy  - Begin an S-curve absolute circular interpolation for X & Y 
_8443_start_tr_arc_zu  - Begin a Trapezoidal relative circular interpolation for Z & U 
_8443_start_ta_arc_zu  - Begin a Trapezoidal absolute circular interpolation for Z & U 
_8443_start_sr_arc_zu  - Begin an S-curve relative circular interpolation for Z & U 
_8443_start_sa_arc_zu  - Begin an S-curve absolute circular interpolation for Z & U 
_8443_start_tr_arc2  - Begin a Trapezoidal relative circular interpolation for any 2 axes 
_8443_start_ta_arc2  - Begin a Trapezoidal absolute circular interpolation for any 2 axes 
_8443_start_sr_arc2  - Begin an S-curve relative circular interpolation for any 2 axes 
_8443_start_sa_arc2  - Begin an S-curve absolute circular interpolation for any 2 axes 
 
@Function Description 

Function No. of axis Speed  
profile 

Relative position/ 
Absolute position 

_8443_start_r_arc_xy R Flat Axis 0 and 1 
_8443_start_a_arc_xy A Flat Axis 0 and 1 
_8443_start_r_arc_zu R Flat Axis 2 and 3 
_8443_start_a_arc_zu A Flat Axis 2 and 3 
_8443_start_r_arc2 R Flat Any two axes 
_8443_start_a_arc2 A Flat Any two axes 
_8443_start_tr_arc_xy R Trapezoidal Axis 0 and 1 
_8443_start_ta_arc_xy A Trapezoidal Axis 0 and 1 
_8443_start_sr_arc_xy R S-curve Axis 0 and 1 
_8443_start_sa_arc_xy A S-curve Axis 0 and 1 
_8443_start_tr_arc_zu R Trapezoidal Axis 2 and 3 
_8443_start_ta_arc_zu A Trapezoidal Axis 2 and 3 
_8443_start_sr_arc_zu R S-curve Axis 2 and 3 
_8443_start_sa_arc_zu A S-curve Axis 2 and 3 
_8443_start_tr_arc2 R Trapezoidal Any two axes 
_8443_start_ta_arc2 A Trapezoidal Any two axes 
_8443_start_sr_arc2 R S-curve Any two axes 
_8443_start_sa_arc2 A S-curve Any two axes 
T: Linear accel/ decel operation S: S-curve accel / decel operation 
R: Relative position specification mode A: Absolute position specification mode 
 



YA7233-0/6E 

- 117 - 

@Syntax 
C/C++ (DOS. Windows XP/7/8) 

I16 _8443_start_r_arc_xy(I16 CardNo, F64 OffsetCx, F64 OffsetCy, F64 OffsetEx, F64 OffsetEy, I16 
DIR, F64 MaxVel); 
I16 _8443_start_a_arc_xy(I16 CardNo, F64 Cx, F64 Cy, F64 Ex, F64 Ey, I16 DIR, F64 MaxVel); 
I16 _8443_start_r_arc_zu(I16 CardNo, F64 OffsetCx, F64 OffsetCy, F64 OffsetEx, F64 OffsetEy, I16 
DIR, F64 MaxVel); 
I16 _8443_start_a_arc_zu(I16 CardNo, F64 Cx, F64 Cy, F64 Ex, F64 Ey, I16 DIR, F64 MaxVel); 
I16 _8443_start_r_arc2(I16 CardNo, I16 *AxisArray, F64 OffsetCx, F64 OffsetCy, F64 OffsetEx, F64 
OffsetEy, I16 DIR, F64 MaxVel); 
I16 _8443_start_a_arc2(I16 CardNo, I16 *AxisArray, F64 Cx, F64 Cy, F64 Ex, F64 Ey, I16 DIR, F64 
MaxVel); 
I16 _8443_start_tr_arc2(I16 CardNo, I16 *AxisArray, F64 OffsetCx, F64 OffsetCy, F64 OffsetEx, F64 
OffsetEy, I16 DIR, F64 StrVel,F64 MaxVel, F64 Tacc,F64 Tdec); 
I16 _8443_start_ta_arc2(I16 CardNo, I16 *AxisArray, F64 Cx, F64 Cy, F64 Ex, F64 Ey, I16 DIR, F64 
StrVel, F64 MaxVel, F64 Tacc,F64 Tdec); 
I16 _8443_start_sr_arc2(I16 CardNo, I16 *AxisArray, F64 OffsetCx, F64 OffsetCy, F64 OffsetEx, F64 
OffsetEy, I16 DIR, F64 StrVel,F64 
MaxVel, F64 Tacc, F64 Tdec, F64 SVacc, F64 SVdec); 
I16 _8443_start_sa_arc2(I16 CardNo, I16 *AxisArray, F64 Cx, F64 Cy, F64 Ex, F64 Ey, I16 DIR, F64 
StrVel, F64 MaxVel, F64 Tacc,F64 
Tdec, F64 SVacc, F64 SVdec); 
I16 _8443_start_tr_arc_xy(I16 CardNo, F64 OffsetCx, F64 OffsetCy, F64 OffsetEx, F64 OffsetEy, I16 
DIR, F64 StrVel,F64 MaxVel,F64 Tacc,F64 Tdec); 
I16 _8443_start_ta_arc_xy(I16 CardNo, F64 Cx, F64 Cy, F64 Ex, F64 Ey, I16 DIR, F64 StrVel,F64 
MaxVel,F64 Tacc,F64 Tdec); 
I16 _8443_start_tr_arc_zu(I16 CardNo, F64 OffsetCx, F64 OffsetCy, F64 OffsetEx, F64 OffsetEy, I16 
DIR, F64 StrVel,F64 MaxVel,F64 
Tacc, F64 Tdec); 
I16 _8443_start_ta_arc_zu(I16 CardNo, F64 Cx, F64 Cy, F64 Ex, F64 Ey, I16 DIR, F64 StrVel,F64 
MaxVel,F64 Tacc,F64 Tdec); 
I16 _8443_start_sr_arc_xy(I16 CardNo, F64 OffsetCx, F64 OffsetCy, F64 OffsetEx, F64 OffsetEy, I16 
DIR, F64 StrVel,F64 MaxVel, F64 Tacc,F64 Tdec,F64 SVacc,F64 SVdec); 
I16 _8443_start_sa_arc_xy(I16 CardNo, F64 Cx, F64 Cy, F64 Ex, F64 Ey, I16 DIR, F64 StrVel,F64 
MaxVel, F64 Tacc,F64 Tdec,F64 SVacc,F64 SVdec); 
I16 _8443_start_sr_arc_zu(I16 CardNo, F64 OffsetCx, F64 OffsetCy, F64 OffsetEx, F64 OffsetEy, I16 
DIR, F64 StrVel,F64 MaxVel, F64 Tacc,F64 Tdec,F64 SVacc,F64 SVdec); 
I16 _8443_start_sa_arc_zu(I16 CardNo, F64 Cx, F64 Cy, F64 Ex, F64 Ey, I16 DIR, F64 StrVel,F64 
MaxVel, F64 Tacc,F64 Tdec,F64 SVacc,F64 SVdec); 

 
 



YA7233-0/6E 

- 118 - 

VB.NET (Windows XP/7/8) 
B_8443_start_r_arc_xy(ByVal CardNo As Short, ByVal OffsetCx As Double, ByVal OffsetCy As Double, 
ByVal OffsetEx As Double, ByVal OffsetEy As Double, ByVal DIR As Short, ByVal MaxVel As Double) 
As Short 
B_8443_start_a_arc_xy(ByVal CardNo As Short, ByVal Cx As Double, ByVal Cy As Double, ByVal Ex 
As Double, ByVal Ey As Double, ByVal DIR As Short, ByVal MaxVel As Double) As Short 
B_8443_start_r_arc_zu(ByVal CardNo As Short, ByVal OffsetCx As Double, ByVal OffsetCy As Double, 
ByVal OffsetEx As Double, ByVal OffsetEy As Double, ByVal DIR As Short, ByVal MaxVel As Double) 
As Short 
B_8443_start_a_arc_zu(ByVal CardNo As Short, ByVal Cx As Double, ByVal Cy As Double, ByVal Ex 
As Double, ByVal Ey As Double, ByVal DIR As Short, ByVal MaxVel As Double) As Short 
 
B_8443_start_r_arc2(ByVal CardNo As Short, ByVal AxisArray() As Short, ByVal OffsetCx As Double, 
ByVal OffsetCy As Double, ByVal OffsetEx As Double, ByVal OffsetEy As Double, ByVal DIR As Short, 
ByVal MaxVel As Double) As Short 
B_8443_start_a_arc2(ByVal CardNo As Short, ByVal AxisArray() As Short, ByVal Cx As Double, ByVal 
Cy As Double, ByVal Ex As Double, ByVal Ey As Double, ByVal DIR As Short, ByVal MaxVel As 
Double) As Short 
 
B_8443_start_tr_arc_xy(ByVal CardNo As Short, ByVal OffsetCx As Double, ByVal OffsetCy As 
Double, ByVal OffsetEx As Double, ByVal OffsetEy As Double, ByVal DIR As Short, ByVal StrVel As 
Double, ByVal MaxVel As Double, ByVal Tacc As Double) As Short 
B_8443_start_ta_arc_xy(ByVal CardNo As Short, ByVal Cx As Double, ByVal Cy As Double, ByVal Ex 
As Double, ByVal Ey As Double, ByVal DIR As Short, ByVal StrVel As Double, ByVal MaxVel As 
Double, ByVal Tacc As Double) As Short 
B_8443_start_sr_arc_xy(ByVal CardNo As Short, ByVal OffsetCx As Double, ByVal OffsetCy As 
Double, ByVal OffsetEx As Double, ByVal OffsetEy As Double, ByVal DIR As Short, ByVal StrVel As 
Double, ByVal MaxVel As Double, ByVal Tacc As Double, ByVal SVacc As Double) As Short 
B_8443_start_sa_arc_xy(ByVal CardNo As Short, ByVal Cx As Double, ByVal Cy As Double, ByVal Ex 
As Double, ByVal Ey As Double, ByVal DIR As Short, ByVal StrVel As Double, ByVal MaxVel As 
Double, ByVal Tacc As Double, ByVal SVacc As Double) As Short 
B_8443_start_tr_arc_zu(ByVal CardNo As Short, ByVal OffsetCx As Double, ByVal OffsetCy As 
Double, ByVal OffsetEx As Double, ByVal OffsetEy As Double, ByVal DIR As Short, ByVal StrVel As 
Double, ByVal MaxVel As Double, ByVal Tacc As Double) As Short 
B_8443_start_ta_arc_zu(ByVal CardNo As Short, ByVal Cx As Double, ByVal Cy As Double, ByVal Ex 
As Double, ByVal Ey As Double, ByVal DIR As Short, ByVal StrVel As Double, ByVal MaxVel As 
Double, ByVal Tacc As Double) As Short 
B_8443_start_sr_arc_zu(ByVal CardNo As Short, ByVal OffsetCx As Double, ByVal OffsetCy As 
Double, ByVal OffsetEx As Double, ByVal OffsetEy As Double, ByVal DIR As Short, ByVal StrVel As 
Double, ByVal MaxVel As Double, ByVal Tacc As Double, ByVal SVacc As Double) As Short 
B_8443_start_sa_arc_zu(ByVal CardNo As Short, ByVal Cx As Double, ByVal Cy As Double, ByVal Ex 
As Double, ByVal Ey As Double, ByVal DIR As Short, ByVal StrVel As Double, ByVal MaxVel As 
Double, ByVal Tacc As Double, ByVal SVacc As Double) As Short 
 
B_8443_start_tr_arc2(ByVal CardNo As Short, ByVal AxisArray() As Short, ByVal OffsetCx As Double, 
ByVal OffsetCy As Double, ByVal OffsetEx As Double, ByVal OffsetEy As Double, ByVal DIR As Short, 
ByVal StrVel As Double, ByVal MaxVel As Double, ByVal Tacc As Double, ByVal Tdec As Double) As 
Short 
B_8443_start_ta_arc2(ByVal CardNo As Short, ByVal AxisArray() As Short, ByVal Cx As Double, 
ByVal Cy As Double, ByVal Ex As Double, ByVal Ey As Double, ByVal DIR As Short, ByVal StrVel As 
Double, ByVal MaxVel As Double, ByVal Tacc As Double, ByVal Tdec As Double) As Short 
B_8443_start_sr_arc2(ByVal CardNo As Short, ByVal AxisArray() As Short, ByVal OffsetCx As Double, 
ByVal OffsetCy As Double, ByVal OffsetEx As Double, ByVal OffsetEy As Double, ByVal DIR As Short, 
ByVal StrVel As Double, ByVal MaxVel As Double, ByVal Tacc As Double, ByVal Tdec As Double, 
ByVal SVacc As Double, ByVal SVdec As Double) As Short 
B_8443_start_sa_arc2(ByVal CardNo As Short, ByVal AxisArray() As Short, ByVal Cx As Double, 
ByVal Cy As Double, ByVal Ex As Double, ByVal Ey As Double, ByVal DIR As Short, ByVal StrVel As 
Double, ByVal MaxVel As Double, ByVal Tacc As Double, ByVal Tdec As Double, ByVal SVacc As 
Double, ByVal SVdec As Double) As Short 
 



YA7233-0/6E 

- 119 - 

C# (Windows XP/7/8) 
Int16 _8443_start_r_arc_xy(Int16  CardNo, Double OffsetCx, Double OffsetCy, Double OffsetEx, 
Double OffsetEy, Int16  DIR,Double MaxVel); 
Int16 _8443_start_a_arc_xy(Int16  CardNo, Double Cx, Double Cy, Double Ex, Double Ey, Int16  
DIR, Double MaxVel); 
Int16 _8443_start_r_arc_zu(Int16  CardNo, Double OffsetCx, Double OffsetCy, Double OffsetEx, 
Double OffsetEy, Int16  DIR, Double MaxVel ); 
Int16 _8443_start_a_arc_zu(Int16  CardNo, Double Cx, Double Cy, Double Ex, Double Ey, Int16  
DIR, Double MaxVel); 
Int16 _8443_start_r_arc2(Int16  CardNo,ref Int16  AxisArray, Double OffsetCx, Double OffsetCy, 
Double OffsetEx, Double OffsetEy, Int16  DIR, Double MaxVel); 
Int16 _8443_start_a_arc2(Int16  CardNo,ref Int16  AxisArray, Double Cx, Double Cy, Double Ex, 
Double Ey, Int16  DIR, Double MaxVel); 
Int16 _8443_start_tr_arc_xy(Int16  CardNo, Double OffsetCx, Double OffsetCy, Double OffsetEx, 
Double OffsetEy, Int16  DIR, Double StrVel,Double MaxVel,Double Tacc,Double Tdec); 
Int16 _8443_start_ta_arc_xy(Int16  CardNo, Double Cx, Double Cy, Double Ex, Double Ey, Int16  
DIR, Double StrVel,Double MaxVel,Double Tacc,Double Tdec); 
Int16 _8443_start_sr_arc_xy(Int16  CardNo, Double OffsetCx, Double OffsetCy, Double OffsetEx, 
Double OffsetEy, Int16  DIR, Double StrVel,Double MaxVel, Double Tacc,Double Tdec,Double 
SVacc,Double SVdec); 
Int16 _8443_start_sa_arc_xy(Int16  CardNo, Double Cx, Double Cy, Double Ex, Double Ey, Int16  
DIR, Double StrVel,Double MaxVel, Double Tacc,Double Tdec,Double SVacc,Double SVdec); 
Int16 _8443_start_tr_arc_zu(Int16  CardNo, Double OffsetCx, Double OffsetCy, Double OffsetEx, 
Double OffsetEy, Int16  DIR, Double StrVel,Double MaxVel,Double Tacc,Double Tdec); 
Int16 _8443_start_ta_arc_zu(Int16  CardNo, Double Cx, Double Cy, Double Ex, Double Ey, Int16  
DIR, Double StrVel,Double MaxVel,Double Tacc,Double Tdec); 
Int16 _8443_start_sr_arc_zu(Int16  CardNo, Double OffsetCx, Double OffsetCy, Double OffsetEx, 
Double OffsetEy, Int16  DIR, Double StrVel,Double MaxVel, Double Tacc,Double Tdec,Double 
SVacc,Double SVdec); 
Int16 _8443_start_sa_arc_zu(Int16  CardNo, Double Cx, Double Cy, Double Ex, Double Ey, Int16  
DIR, Double StrVel,Double MaxVel, Double Tacc,Double Tdec,Double SVacc,Double SVdec); 
Int16 _8443_start_tr_arc2(Int16  CardNo,ref Int16  AxisArray, Double OffsetCx, Double OffsetCy, 
Double OffsetEx, Double OffsetEy, Int16  DIR, Double StrVel,Double MaxVel, Double Tacc,Double 
Tdec); 
Int16 _8443_start_ta_arc2(Int16  CardNo,ref Int16  AxisArray, Double Cx, Double Cy, Double Ex, 
Double Ey, Int16  DIR, Double StrVel, Double MaxVel, Double Tacc,Double Tdec); 
Int16 _8443_start_sr_arc2(Int16  CardNo,ref Int16  AxisArray, Double OffsetCx, Double OffsetCy, 
Double OffsetEx, Double OffsetEy, Int16  DIR, Double StrVel,Double MaxVel, Double Tacc,Double 
Tdec,Double SVacc,Double SVdec); 
Int16 _8443_start_sa_arc2(Int16  CardNo,ref Int16  AxisArray, Double Cx, Double Cy, Double Ex, 
Double Ey, Int16  DIR, Double StrVel, Double MaxVel, Double Tacc,Double Tdec,Double 
SVacc,Double SVdec); 
 

@Argument 
CardNo: Board number designated to perform a linear interpolation 
OffsetCx: X-axis offset to center  
OffsetCy: Y-axis offset to center  
OffsetEx: X-axis offset to end of arc  
OffsetEy: Y-axis offset to end of arc 
Cx: specified X-axis absolute position of center  
Cy: specified Y-axis absolute position of center  
Ex: specified X-axis absolute position end of arc 
Ey: specified Y-axis absolute position end of arc 
DIR: Specified direction of arc, CW:0, CCW:1 
StrVel: starting velocity of a velocity profile in unit of pulse per second 
MaxVel: Tangential velocity in unit of pulse per second  
Tacc: specified acceleration time in unit of second  
Tdec: specified deceleration time in unit of second 
SVacc: specified velocity interval in which S-curve acceleration is performed. 

 Note: SVacc = 0, for pure S-curve 



YA7233-0/6E 

- 120 - 

SVdec: specified velocity interval when S-curve deceleration is performed. 
 Note: SVacc = 0; S-curve without linear parts  

AxisArray: Array of axis number to perform an interpolation. 
Example: Int AxisArray[2] = {0,2}; // axis 0 and 2  

Int AxisArray[2] = {1,3}; // axis 1 and 3 
Note: Be sure to store axis numbers in the array in ascending order. 

 
@Return Code 

ERR_NoError : 0 
ERR_SpeedError : 11 
ERR_AxisArrayError : 15 

 



YA7233-0/6E 

- 121 - 

6.9 Helical Interpolation Operation 
 
@Function Name 
_8443_start_tr_helical_xzy  - Begin a T-curve relative helical interpolation for X, Z and Y axis 
_8443_start_ta_helical_xzy  - Begin a T-curve absolute helical interpolation for X, Z and Y axis 
_8443_start_sr_helical_xzy  - Begins S-curve relative helical interpolation for X, Z and Y axis 
_8443_start_sa_helical_xzy  - Begins S-curve absolute helical interpolation for X, Z and Y axis 
_8443_start_tr_helical_xyz  - Begin a T-curve relative helical interpolation for X, Y and Z axis 
_8443_start_ta_helical_xyz  - Begin a T-curve absolute helical interpolation for X, Y and Z axis 
_8443_start_sr_helical_xyz  - Begins S-curve relative helical interpolation for X, Y and Z axis 
_8443_start_sa_helical_xyz  - Begins S-curve absolute helical interpolation for X, Y and Z axis 
 
@Function Description 
These functions perform helical interpolation operations with different profiles. Detail comparisons of these 
functions are described in the below table. These functions can be used for a circular interpolation with axis 
X and axis Z and to adjust the angle of a jig toward an arc tangent point with Y axis.  
In this operation, U axis operation will be a “dummy motion” so it cannot be used for any other purpose. 
 

Function No. of axis Speed  
profile 

Relative position/ 
Absolute position Target axes 

_8443_start_tr_helical_xzy 4 T R Axis 0, 2, 1 
_8443_start_ta_helical_xzy 4 T A Axis 0, 2, 1 

_8443_start_sr_helical_xzy 4 S R Axis 0, 2, 1 

_8443_start_sa_helical_xzy 4 S A Axis 0, 2, 1 

_8443_start_tr_helical_xyz 4 T R Axis 0, 1, 2 
_8443_start_ta_helical_xyz 4 T A Axis 0, 1, 2 

_8443_start_sr_helical_xyz 4 S R Axis 0, 1, 2 

_8443_start_sa_helical_xyz 4 S A Axis 0, 1, 2 
 
T: Linear accel/ decel operation S: S-curve accel / decel operation 
R: Relative position specification mode A: Absolute position specification mode 
 
@Syntax 
C/C++ (Windows XP/7/8) 

I16 _8443_start_tr_helical_xzy(I16 CardNo, F64 OffsetCx, F64 OffsetCz, F64 OffsetEx, F64 OffsetEz, 
F64 PitchDist, I16 CW_CCW, F64 StrVel, F64 MaxVel, F64 Tacc, F64 Tdec); 
I16 _8443_start_ta_helical_xzy(I16 CardNo, F64 Cx, F64 Cz, F64 Ex, F64 Ez, F64 PitchPos, I16 
CW_CCW, F64 StrVel, F64 MaxVel, F64 Tacc, F64 Tdec); 
I16 _8443_start_sr_helical_xzy(I16 CardNo, F64 OffsetCx, F64 OffsetCz, F64 OffsetEx, F64 OffsetEz, 
F64 PitchDist, I16 CW_CCW, F64 StrVel, F64 MaxVel, F64 Tacc, F64 Tdec, F64 SVacc, F64 SVdec); 
I16 _8443_start_sa_helical_xzy(I16 CardNo, F64 Cx, F64 Cz, F64 Ex, F64 Ez, F64 PitchPos, I16 
CW_CCW, F64 StrVel, F64 MaxVel, F64 Tacc, F64 Tdec, F64 SVacc, F64 SVdec); 
I16 _8443_start_tr_helical_xyz(I16 CardNo, F64 OffsetCx, F64 OffsetCy, F64 OffsetEx, F64 OffsetEy, 
F64 PitchDist, I16 CW_CCW, F64 StrVel, F64 MaxVel, F64 Tacc, F64 Tdec); 
I16 _8443_start_ta_helical_xyz(I16 CardNo, F64 Cx, F64 Cy, F64 Ex, F64 Ey, F64 PitchPos, I16 
CW_CCW, F64 StrVel, F64 MaxVel, F64 Tacc, F64 Tdec); 
I16 _8443_start_sr_helical_xyz(I16 CardNo, F64 OffsetCx, F64 OffsetCy, F64 OffsetEx, F64 OffsetEy, 
F64 PitchDist, I16 CW_CCW, F64 StrVel, F64 MaxVel, F64 Tacc, F64 Tdec, F64 SVacc, F64 SVdec); 
I16 _8443_start_sa_helical_xyz(I16 CardNo, F64 Cx, F64 Cy, F64 Ex, F64 Ey, F64 PitchPos, I16 
CW_CCW, F64 StrVel, F64 MaxVel, F64 Tacc, F64 Tdec, F64 SVacc, F64 SVdec); 

 



YA7233-0/6E 

- 122 - 

VB.NET (Windows XP/7/8) 
B_8443_start_tr_helical_xzy(ByVal CardNo As Short, ByVal OffsetCx As Double, ByVal OffsetCz As 
Double, ByVal OffsetEx As Double, ByVal OffsetEz As Double, ByVal PitchDist As Double, ByVal 
CW_CCW As Short, ByVal StrVel As Double, ByVal MaxVel As Double, ByVal Tacc As Double, ByVal 
Tdec As Double) As Short 
B_8443_start_ta_helical_xzy(ByVal CardNo As Short, ByVal Cx As Double, ByVal Cz As Double, 
ByVal Ex As Double, ByVal Ez As Double, ByVal PitchPos As Double, ByVal CW_CCW As Short, 
ByVal StrVel As Double, ByVal MaxVel As Double, ByVal Tacc As Double, ByVal Tdec As Double) As 
Short 
B_8443_start_sr_helical_xzy(ByVal CardNo As Short, ByVal OffsetCx As Double, ByVal OffsetCz As 
Double, ByVal OffsetEx As Double, ByVal OffsetEz As Double, ByVal PitchDist As Double, ByVal 
CW_CCW As Short, ByVal StrVel As Double, ByVal MaxVel As Double, ByVal Tacc As Double, ByVal 
Tdec As Double, ByVal SVacc As Double, ByVal SVdec As Double) As Short 
B_8443_start_sa_helical_xzy(ByVal CardNo As Short, ByVal Cx As Double, ByVal Cz As Double, 
ByVal Ex As Double, ByVal Ez As Double, ByVal PitchPos As Double, ByVal CW_CCW As Short, 
ByVal StrVel As Double, ByVal MaxVel As Double, ByVal Tacc As Double, ByVal Tdec As Double, 
ByVal SVacc As Double, ByVal SVdec As Double) As Short 
B_8443_start_tr_helical_xyz(ByVal CardNo As Short, ByVal OffsetCx As Double, ByVal OffsetCy As 
Double, ByVal OffsetEx As Double, ByVal OffsetEy As Double, ByVal PitchDist As Double, ByVal 
CW_CCW As Short, ByVal StrVel As Double, ByVal MaxVel As Double, ByVal Tacc As Double, ByVal 
Tdec As Double) As Short 
B_8443_start_ta_helical_xyz(ByVal CardNo As Short, ByVal Cx As Double, ByVal Cy As Double, 
ByVal Ex As Double, ByVal Ey As Double, ByVal PitchPos As Double, ByVal CW_CCW As Short, 
ByVal StrVel As Double, ByVal MaxVel As Double, ByVal Tacc As Double, ByVal Tdec As Double) As 
Short 
B_8443_start_sr_helical_xyz(ByVal CardNo As Short, ByVal OffsetCx As Double, ByVal OffsetCy As 
Double, ByVal OffsetEx As Double, ByVal OffsetEy As Double, ByVal PitchDist As Double, ByVal 
CW_CCW As Short, ByVal StrVel As Double, ByVal MaxVel As Double, ByVal Tacc As Double, ByVal 
Tdec As Double, ByVal SVacc As Double, ByVal SVdec As Double) As Short 
B_8443_start_sa_helical_xyz(ByVal CardNo As Short, ByVal Cx As Double, ByVal Cy As Double, 
ByVal Ex As Double, ByVal Ey As Double, ByVal PitchPos As Double, ByVal CW_CCW As Short, 
ByVal StrVel As Double, ByVal MaxVel As Double, ByVal Tacc As Double, ByVal Tdec As Double, 
ByVal SVacc As Double, ByVal SVdec As Double) As Short 
 

C# (Windows XP/7/8) 
Int16 _8443_start_tr_helical_xzy(Int16 CardNo, Double OffsetCx, Double OffsetCz, Double OffsetEx, 
Double OffsetEz, Double PitchDist, Int16 CW_CCW, Double StrVel, Double MaxVel, Double Tacc, 
Double Tdec); 
Int16 _8443_start_ta_helical_xzy(Int16 CardNo, Double Cx, Double Cz, Double Ex, Double Ez, Double 
PitchDist, Int16 CW_CCW, Double StrVel, Double MaxVel, Double Tacc, Double Tdec); 
Int16 _8443_start_sr_helical_xzy(Int16 CardNo, Double OffsetCx, Double OffsetCz, Double OffsetEx, 
Double OffsetEz, Double PitchDist, Int16 CW_CCW, Double StrVel, Double MaxVel, Double Tacc, 
Double Tdec, Double SVacc, Double SVdec); 
Int16 _8443_start_sa_helical_xzy(Int16 CardNo, Double Cx, Double Cz, Double Ex, Double Ez, Double 
PitchDist, Int16 CW_CCW, Double StrVel, Double MaxVel, Double Tacc, Double Tdec, Double SVacc, 
Double SVdec); 
Int16 _8443_start_tr_helical_xyz(Int16 CardNo, Double OffsetCx, Double OffsetCy, Double OffsetEx, 
Double OffsetEy, Double PitchDist, Int16 CW_CCW, Double StrVel, Double MaxVel, Double Tacc, 
Double Tdec); 
Int16 _8443_start_ta_helical_xyz(Int16 CardNo, Double Cx, Double Cy, Double Ex, Double Ey, Double 
PitchDist, Int16 CW_CCW, Double StrVel, Double MaxVel, Double Tacc, Double Tdec); 
Int16 _8443_start_sr_helical_xyz(Int16 CardNo, Double OffsetCx, Double OffsetCy, Double OffsetEx, 
Double OffsetEy, Double PitchDist, Int16 CW_CCW, Double StrVel, Double MaxVel, Double Tacc, 
Double Tdec, Double SVacc, Double SVdec); 
Int16 _8443_start_sa_helical_xyz(Int16 CardNo, Double Cx, Double Cy, Double Ex, Double Ey, Double 
PitchDist, Int16 CW_CCW, Double StrVel, Double MaxVel, Double Tacc, Double Tdec, Double SVacc, 
Double SVdec); 



YA7233-0/6E 

- 123 - 

@Argument 
CardNo: Board number designated to perform a helical interpolation 
AxisNo: Axis number designated to move or stop. 
OffsetCx: X-axis (first axis of target axes) offset to center 
OffsetCz: Z-axis (second axis of target axes) offset to center 
OffsetEx: X-axis (first axis of target axes) offset to end of arc 
OffsetEz: Z-axis offset to end of arc 
PitchDist: Y-axis specified relative distance to move 
Cx: X-axis (first axis of target axes) absolute position of center of arc 
Cz: Z-axis (second axis of target axes) absolute position of center of arc 
Ex: X-axis (first axis of target axes) absolute position of end of arc 
Ez: Z-axis (second axis of target axes) absolute position of end of arc 
PitchPos: Y-axis specified absolute position to move 
CW_CCW: Specified direction of arc. 0: CW, 1: CCW 
StrVel: Starting velocity of a velocity profile in units of pulse per second.  
MaxVel: Maximum velocity in units of pulse per second. 
Tacc: Specified acceleration time in units of seconds. 
Tdec: Specified deceleration time in units of seconds. 
SVacc: Specified velocity interval in which S-curve acceleration is performed. 

Note: SVacc = 0, S-curve without linear parts. 
SVdec: specified velocity interval when S-curve deceleration is performed.    

Note: SVacc = 0; S-curve without linear parts. 
 

@Return Code 
ERR_CardNoError : 30 
ERR_AxisRangeError : 26 
ERR_CanNotPitchCompensation  : 77 
ERR_MotionBusy : 70 
ERR_SpeedError : 11 
ERR_PosOutOfRange : 13 
ERR_NoError : 0 



YA7233-0/6E 

- 124 - 

6.10 Home Return Mode (Origin Return)  
 
@Function Name 
_8443_set_home_config - Set the configuration for home return operation 
_8443_home_move  - Perform a home return operation 
_8443_escape_home  - Escape the home function 
_8443_home_search  - Auto-search home switch (without ORGOffset setting, Default ORGOffset = 100) 
_8443_auto_home_search - Auto-search home switch (with ORGOffset) 
 
@Function Description 
_8443_set_home_config: 

Configure the home return mode, origin and Index signal (EZ) Logic, EZ count and ERC output options 
for home_move() function. Refer to section 4.1.11 for the setting of home mode control. 

_8443_home_move: 
This function will cause the axis to perform a home return operation according to the setting of 
_8443_set_home_config() function. The direction of moving is determined by the sign of velocity 
parameter (StaVel, MaxVel). Since the stopping condition of this function is determined by 
home_mode setting, you should be careful to select the initial moving direction. Or you should be 
careful to handle the condition when a limit switch is touched or other conditions that is possible 
causing the axis to stop. Executing v_stop() function during home_move() can stop the axis. 
_8443_escape_home: 
After homing, use this function to leave home. 

_8443_home_search: 
_8443_auto_home_search: 

Both of the above two functions have the same behavior for Auto-Search of the home switch. The two 
functions are used to perform a home-search move according to the settings of 
_8443_set_home_config() function. The direction of movement is set by the sign of the velocity 
parameter (MaxVel). If MaxVel is positive value, the moving direction is positive and the vice versa. 
User would also select a specified setting of home mode, moving direction, starting velocity, maximum 
velocity, and acceleration for a specified home application. The only one difference between them is 
ORG Offset parameter. _8443_home_search() with default ORGOffset value is 100 pulse. However, 
you can use _8443_auto_home_search() to specify a new ORGOffset value, and modify the default 
ORGOffset value. For the details, refer to Home Search Example in chapter 4.1.11.  
 

@Syntax 
C/C++ (DOS, Windows XP/7/8) 

I16 _8443_set_home_config(I16 AxisNo, I16home_mode, I16 org_logic, I16 ez_logic, I16 ez_count, 
I16 erc_out); 
I16 _8443_home_move(I16 AxisNo, F64 StrVel, F64 MaxVel, F64 Tacc);  
I16 _8443_escape_home(I16 AxisNo, F64 StrVel,F64 MaxVel,F64 Tacc);  
I16 _8443_home_search(I16 AxisNo, F64 StrVel, F64 MaxVel, F64 Tacc);  
I16 _8443_auto_home_search(I16 AxisNo, F64 StrVel, F64 MaxVel, F64 Tacc, F64 ORGOffset); 
 

VB.NET (Windows XP/7/8) 
B_8443_set_home_config(ByVal AxisNo As Short, ByVal home_mode As Short, ByVal org_logic As 
Short, ByVal ez_logic As Short, ByVal ez_count As Short, ByVal erc_out As Short) As Short 
B_8443_home_move(ByVal AxisNo As Short, ByVal StrVel As Double, ByVal MaxVel As Double, 
ByVal Tacc As Double) As Short 
B_8443_escape_home(ByVal AxisNo As Short, ByVal StrVel As Double, ByVal MaxVel As Double, 
ByVal Tacc As Double) As Short 
B_8443_home_search(ByVal AxisNo As Short, ByVal StrVel As Double, ByVal MaxVel As Double, 
ByVal Tacc As Double) As Short 
B_8443_auto_home_search(ByVal AxisNo As Short, ByVal StrVel As Double, ByVal MaxVel As 
Double, ByVal Tacc As Double, ByVal ORGOffset As Double) As Short 
 



YA7233-0/6E 

- 125 - 

C# (Windows XP/7/8) 
Int16 _8443_set_home_config(Int16 AxisNo, Int16 home_mode, Int16 org_logic, Int16 ez_logic, Int16 
ez_count, Int16 erc_out); 
Int16 _8443_home_move(Int16 AxisNo, Double StrVel, Double MaxVel, Double Tacc); 
Int16 _8443_escape_home(Int16  AxisNo, Double SrVel,Double MaxVel,Double Tacc); 
Int16 _8443_home_search(Int16  AxisNo, Double StrVel, Double MaxVel, Double Tacc, Double 
ORGOffset); 
Int16 _8443_auto_home_search(Int16 AxisNo, Double StrVel, Double MaxVel, Double Tacc, Double 
ORGOffset); 

 
@Argument 

AxisNo: Designated axis number (0 starts)) 
home_mode: Stopping modes for home return operation, 0 ~ 12 (Refer to section 4.1.11) 
org_logic: Action logic configuration for ORG signal: 

org_logic=0: Active Low 
org_logic=1: Active High 

ez_logic: Action logic configuration for EZ signal: 
ez_logic=0: Active Low 
ez_logic=1: Active High 

ez_count: 0 ~ 15 (Refer to section 4.1.11) 
erc_out: ERC output option  

erc_out=0 No erc output 
erc_out=1 erc is output when homing is completed 

StrVel: Starting velocity in a velocity profile (unit: pps) 
MaxVel: Maximum velocity in a velocity profile (unit: pps) 
Tacc: Specified acceleration time (unit: sec) 
ORGOffset: The escape pulse amounts when the home search touches the home signal (=when the 

home signal is ON) 
 

@Return Code 
ERR_NoError : 0 

 



YA7233-0/6E 

- 126 - 

6.11 Manual Pulser Operation 
 
@Function Name 
_8443_disable_pulser_input  - Disable the pulser input  
_8443_set_pulser_iptmode  - Set the input signal modes of pulser 
_8443_pulser_vmove  - Start the manual pulser v_move 
_8443_pulser_pmove  - Start the manual pulser p_move 
_8443_pulser_home_move  - Start the manual pulser home operation  
_8443_set_pulser_ratio  - Set the manual pulser ratio for actual output pulse rate 
_8443_pulser_r_line2  - Start the pulser mode for 2-axis linear interpolation 
_8443_pulser_r_arc2  - Start the pulser mode for 2-axis circular interpolation 
 
@Function Description 
_8443_disable_pulser_input: This function is used to set the pulser input disable or enable. 
_8443_set_pulser_iptmode: This function is used to configure the input mode of manual pulser. 
_8443_pulser_vmove:  

As this command is written, the axis starts to move according to the manual pulser input. The axis will 
move one step when receiving one pulse from the pulser until the sd_stop or emg_stop command is 
written. 

_8443_pulser_pmove: 
With this command, the axis starts to move according to the manual pulser input. The axis will move 
one step when receiving one pulse from the pulser until the sd_stop or emg_stop command is written 
or the output pulse number reach the Dist. 

_8443_pulser_home_move: 
As this command is written, the axis starts to move according to the manual pulser input. The axis will 
move one step when receiving one pulse from pulser until the sd_stop or emg_stop command is 
written or the home move is completed. 

_8443_set_pulser_ratio: 
With this command, you can perform multiplication setting when outputting command pulses from 
pulser input. 

_8443_pulser_r_line2: 
Pulser mode for 2-axis linear interpolation (relative mode only) 

_8443_pulser_r_arc2: 
Pulser mode for 2-axis circular interpolation (relative mode only) 
 

@Syntax 
C/C++ (DOS, Windows XP/7/8) 

I16 _8443_disable_pulser_input(I16 AxisNo, U16 Disable); 
I16 _8443_set_pulser_iptmode(I16 AxisNo,I16 InputMode, I16 Inverse);  
I16 _8443_pulser_vmove(I16 AxisNo, F64 SpeedLimit); 
I16 _8443_pulser_pmove(I16 AxisNo, F64 Dist, F64 SpeedLimit);  
I16 _8443_pulser_home_move(I16 AxisNo, I16 HomeType, F64 SpeedLimit); 
I16 _8443_set_pulser_ratio(I16 AxisNo,I16 PDV, I16 PMG); 
I16 _8443_pulser_r_line2(I16 CardNo,I16 *AxisArray, F64 DistX, F64 DistY, F64 SpeedLimit); 
I16 _8443_pulser_r_arc2(I16 CardNo, I16 *AxisArray, F64 OffsetCx, F64 OffsetCy, F64 OffsetEx, F64 
OffsetEy, I16 DIR, F64 MaxVel); 
 



YA7233-0/6E 

- 127 - 

VB.NET (Windows XP/7/8) 
B_8443_disable_pulser_input(ByVal AxisNo As Short, ByVal Disable As Integer) As Short 
B_8443_set_pulser_iptmode(ByVal AxisNo As Short, ByVal InputMode As Short, ByVal Inverse As 
Short) As Short 
B_8443_pulser_vmove(ByVal AxisNo As Short, ByVal SpeedLimit As Double) As Short 
B_8443_pulser_pmove(ByVal AxisNo As Short, ByVal Dist As Double, ByVal SpeedLimit As Double) 
As Short 
B_8443_pulser_home_move(ByVal AxisNo As Short, ByVal HomeType As Short, ByVal SpeedLimit 
As Double) As Short 
B_8443_set_pulser_ratio(ByVal AxisNo As Short, ByVal PDV As Short, ByVal PMG As Short) As Short 
B_8443_pulser_r_line2(ByVal CardNo As Short, ByVal AxisArray() As Short, ByVal DistX As Double, 
ByVal DistY As Double, ByVal SpeedLimit As Double) As Short 
B_8443_pulser_r_arc2(ByVal CardNo As Short, ByVal AxisArray() As Short, ByVal OffsetCx As Double, 
ByVal OffsetCy As Double, ByVal OffsetEx As Double, ByVal OffsetEy As Double, ByVal DIR As Short, 
ByVal MaxVel As Double) As Short 
 

C# (Windows XP/7/8) 
Int16 _8443_disable_pulser_input(Int16 AxisNo, UInt16 Disable); 
Int16 _8443_set_pulser_iptmode(Int16  AxisNo,Int16  InputMode, Int16  Inverse); 
Int16 _8443_pulser_vmove(Int16 AxisNo,Double SpeedLimit); 
Int16 _8443_pulser_pmove(Int16  AxisNo, Double Dist,Double SpeedLimit); 
Int16 _8443_pulser_home_move(Int16  AxisNo, Int16  HomeType,Double SpeedLimit); 
Int16 _8443_set_pulser_ratio(Int16  AxisNo,Int16  PDV, Int16  PMG); 
Int16 _8443_pulser_r_line2(Int16  CardNo,ref Int16  AxisArray, Double DistX, Double DistY, Double 
SpeedLimit); 
Int16 _8443_pulser_r_arc2(Int16  CardNo,ref Int16  AxisArray, Double OffsetCx, Double OffsetCy, 
Double OffsetEx, Double OffsetEy, Int16  DIR, Double MaxVel); 
 

@Argument 
AxisNo: Designated axis number (0 starts) 
Disable: Disable pulser input 

Disable=1: Disable pulser  
Disable=0: Enable pulser  

InputMode: Setting of manual pulser input mode from PA and PB 
InputMode = 0: 1 x A/B phase type pulse input 
InputMode = 1: 2 x A/B phase type pulse input  
InputMode = 2: 4 x A/B phase type pulse input  
InputMode = 3: 4X A/B phase type pulse input 

Inverse:  Reverse the moving direction from the pulse direction 
Inverse= 0: No reverse  
Inverse= 1: Reverse  

SpeedLimit: The maximum speed in pulser operation.  
For example, if SpeedLimit is set to 100 pps, the axis can move at 100 pps at the fastest, even the 
input pulser signal rate is more than 100 pps.  

Dist: Specified the relative distance to move 
HomeType: Specified home move type  

HomeType = 0: Command Origin.(The axis stops when the command counter becomes ‘0’) 
HomeType = 1: 1, Feedback Origin.(The axis stops when the feedback counter becomes ‘0’) 

PDV, PMG: Division and Multiple factor settings: 
The settable range is: PDV: 0 ~ 2047, PMG: 0 ~31. 
The formula for calculating the number of output pulses is as follows: 
 
When PDV = 1 ~ 2047 

Output Pulse Count = Input Pulser Count x (PMG + 1) x PDV / 2048 
When PDV = 0 

Output Pulse Count = Input Pulser Count x (PMG + 1) 



YA7233-0/6E 

- 128 - 

DistX: Specified relative distance of axis X to move 
DistY: Specified relative distance of axis Y to move 
OffsetCx: X-axis offset to the center  
OffsetCy: Y-axis offset to the center  
OffsetEx: X-axis offset to the end of arc  
OffsetEy: Y-axis offset to the end of arc 
DIR: Specified direction of the arc;  0: CW,  1: CCW 
MaxVel: Maximum tangential velocity (unit: pps) 
 

@Return Code 
ERR_NoError : 0 
ERR_PulserHomeTypeError : 35 

 



YA7233-0/6E 

- 129 - 

6.12 Motion Status  
 
@Function Name 
_8443_motion_done - Return the axis motion status   
 
@Function Description 
_8443_motion_done: 

Return the motion status 
 
@Syntax 
C/C++ (DOS, Windows XP/7/8) 

I16 _8443_motion_done(I16 AxisNo); 
 
VB.NET (Windows XP/7/8) 

B_8443_motion_done(ByVal AxisNo As Short) As Short 
 

C# (Windows XP/7/8) 
Int16 _8443_motion_done(Int16 AxisNo); 

 
@Argument 

AxisNo: Number of the axis (0 starts) 
 
@Return Code 

0 Stop 
1 Reserved 
2 Reserved 
3 Reserved 
4 Wait for other axis to stop 
5 Wait for ERC output to finish 
6 Wait for DIR Change 
7 Backlash is being compensated 
8 Wait for PA/PB input 
9 In home special speed motion 
10 In start velocity operation  
11 In accelerating  
12 In max velocity operation 
13 In decelerating 
14 Wait for INP 
15 Other (Other axis is still moving) 

 



YA7233-0/6E 

- 130 - 

6.13 Motion Interface I/O 
 
@Function Name 
_8443_set_alm  - Set alarm logic and alarm operating mode 
_8443_set_el  - Set EL operating mode 
_8443_set_inp  - Set INP logic and operating mode (INP enabled/disabled) 
_8443_set_erc  - ERC logic and output timing 
_8443_set_servo  - SVON siginal terminal (General purpose output) ON/OFF 
_8443_set_sd  - Set SD logic and operation mode (SD enabled/disabled) 
 
@Function Description 
_8443_set_alm: 

Set the active logic of ALARM signal input from a servo driver. Two reacting modes are available when 
ALARM signal is active.  

_8443_set_el: 
Set the reacting modes for EL signal. 

_8443_set_inp: 
Set the active logic of In-Position signal input from a servo driver. You can select either enable or 
disable of this function. The default state is disabled. 

_8443_set_erc: 
You can set the logic and output time of ERC signal by this function.  

_8443_set_servo: 
You can set the ON-OFF state of SVON signal by this function. The default value is 1(OFF), which 
means the SVON is Open status to GND. 

_8443_set_sd: 
Set the active logic, the latch control and the operating mode of SD signal input from a mechanical 
system. Users can select whether or not to enable this function. The default state is disabled.  

 
@Syntax 
C/C++ (DOS, Windows XP/7/8) 

I16 _8443_set_alm(I16 AxisNo, I16 alm_logic, I16 alm_mode);  
I16 _8443_set_el(I16 AxisNo, I16 el_mode); 
I16 _8443_set_inp(I16 AxisNo, I16 inp_enable, I16 inp_logic);  
I16 _8443_set_erc(I16 AxisNo, I16 erc_logic, I16 erc_on_time);  
I16 _8443_set_servo(I16 AxisNo, I16 on_off); 
I16 _8443_set_sd(I16 AxisNo, I16 enable, I16 sd_logic, I16 sd_latch, I16 sd_mode); 

 
VB.NET (Windows XP/7/8) 

B_8443_set_alm(ByVal AxisNo As Short, ByVal alm_logic As Short, ByVal alm_mode As Short) As 
Short 
B_8443_set_el(ByVal AxisNo As Short, ByVal el_mode As Short) As Short 
B_8443_set_inp(ByVal AxisNo As Short, ByVal inp_enable As Short, ByVal inp_logic As Short) As 
Short 
B_8443_set_erc(ByVal AxisNo As Short, ByVal erc_logic As Short, ByVal erc_on_time As Short) As 
Short 
B_8443_set_servo(ByVal AxisNo As Short, ByVal on_off As Short) As Short 
B_8443_set_sd(ByVal AxisNo As Short, ByVal enable As Short, ByVal sd_logic As Short, ByVal 
sd_latch As Short, ByVal sd_mode As Short) As Short 
 

C# (Windows XP/7/8) 
Int16 _8443_set_alm(Int16 AxisNo, Int16 alm_logic, Int16 alm_mode); 
Int16 _8443_set_el(Int16 AxisNo, Int16 el_mode); 
Int16 _8443_set_inp(Int16 AxisNo, Int16 inp_enable, Int16 inp_logic); 
Int16 _8443_set_erc(Int16 AxisNo, Int16 erc_logic, Int16 erc_on_time); 
Int16 _8443_set_servo(Int16 AxisNo, Int16 on_off); 
Int16 _8443_set_sd(Int16 AxisNo, Int16 enable, Int16 sd_logic, Int16 sd_latch, Int16 sd_mode); 

 



YA7233-0/6E 

- 131 - 

@Argument 
AxisNo: Number of the axis (0 starts) 
alm_logic: Set the logic of ALARM signal:  

alm_logic = 0: Active LOW 
alm_logic = 1: Active HIGH 

alm_mode: Reacting modes when receiving ALARM signal. 
alm_mode = 0, Motor immediately stops (default)  
alm_mode = 1, Motor decelerates and stops. 

el_mode: Reacting modes when receiving EL signal. 
el_mode = 0, Motor immediately stops. (default)  
el_mode = 1, Motor decelerates and stops. 

inp_enable: INP function enable/disable 
inp_enable = 0, Disabled (default)  
inp_enable = 1, Enabled 

inp_logic: Setting of active logic for INP signal 
inp_logic = 0, active LOW.  
inp_logic = 1, active HIGH. 

erc_logic: Setting of active logic for ERC signal 
erc_logic = 0, active LOW.  
erc_logic = 1, active HIGH. 

erc_on_time: Setting of time length of ERC active 
erc_on_time = 3 1.6ms 
erc_on_time = 4 13ms 
erc_on_time = 5 52ms 
erc_on_time = 6 104ms 

on_off: ON-OFF state of SVON signal 
on_off = 0, ON  
on_off = 1, OFF 

enable: Enable/disable of SD signal. 
enable = 0, Disabled (default)  
enable = 1, Enabled 

sd_logic: setting of active logic for SD signal 
sd_logic = 0, active LOW.  
sd_logic = 1, active HIGH. 

sd_latch: Setting of latch control for SD signal 
sd_latch = 0, No latch.  
sd_latch = 1, Latch. 

sd_mode: Setting the reacting mode of SD signal 
sd_mode = 0, Slow down only  
sd_mode = 1, Slow down and stop 

 
@Return Code 

ERR_NoError : 0 
 



YA7233-0/6E 

- 132 - 

6.14 Motion I/O Monitoring 
 
@Function Name 
_8443_get_io_status - Obtain the all motion I/O status  
 
@Function Description 
_8443_get_io_status: 

 
Obtain all of the motion I/O status. The definition of each bit is as follows: 
 

Bit Name Description 
0 RDY RDY terminal input 
1 ALM Alarm Signal input  
2 +EL Positive Limit input switch 
3 −EL Negative Limit input switch 
4 ORG Origin input switch 
5 DIR DIR output 
6 EMG EMG input 
7 PCS PCS signal input 
8 ERC ERC signal output 
9 EZ Index (Z-phase) signal input 
10 Reserved  
11 Latch Latch signal input 
12 SD Slow Down signal input 
13 INP In-Position signal input 
14 SVON Servo-ON status output  

 
@Syntax 
C/C++ (DOS, Windows XP/7/ 8) 

I16 _8443_get_io_status(I16 AxisNo, U16 *io_sts); 
 
VB.NET (Windows XP/7/8) 

B_8443_get_io_status(ByVal AxisNo As Short, ByRef io_sts As Short) As Short 
 

C# (Windows XP/7/8) 
Int16 _8443_get_io_status(Int16 AxisNo, ref UInt16 io_sts); 

 
@Argument 

AxisNo: Number of the axis (0 starts) 
*io_sts: I/O status  
 Where “1’ is ON and “0” is OFF. ON/OFF state is read based on the corresponding logic to set. 

 
@Return Code 

ERR_NoError : 0 
 

 

 

 



YA7233-0/6E 

- 133 - 

6.15 Interrupt Operation  
 
@Function Name 
_8443_int_control  - Enable/Disable of INT operation  
_8443_set_int_factor  - Set INT factor  
_8443_int_enable  - Enable event  
_8443_int_disable  - Disable event  
_8443_get_int_status  - Obtain INT Status  
_8443_link_interrupt  - Set link to the interrupt call back function 
_8443_set_axis_stop_int  - Enable axis stop INT 
_8443_mask_axis_stop_int - Mask axis stop INT 
 
@Function Description 
_8443_int_control: 

This function is used to enable an interrupt generation to the host PC 
 
_8443_set_int_factor: 

This function allows you to select the factor to initiate an event INT. INT status of PPCIe-8443 is 
composed of two independent parts: error_int_status and event_int_status.  
The event_int_status recodes motions and comparator events under normal operations, and this kind 
of INT status can be masked (=disabled) by _8443_set_int_factor().  
The error_int_status is for an abnormal stop of PPCIe-8443 such as EL, ALM …etc. This kind of INT 
status cannot be masked.  
The following is the definition of these two int_status. By setting the relative bit to "1”, PPCIe-8443 can 
generate INT signal to the host PC. 
 

 
Bit Description 
0 Normal stop 
1 Next command continued 
2 Command when pre-register 2 is empty 
3 (Reserved) 
4 Acceleration start 
5 Acceleration end 
6 Deceleration start 
7 Deceleration end 
8 (Reserved) 
9 (Reserved) 
10 (Reserved) 
11 General comparator is satisfied  
12 Compared triggered for axis 0 and 1 
13 (Reserved) 
14 Latched for axis 2 and 3 
15 When latching the count value by ORG input  
16 SD input ON 
17 (Reserved) 
18 CSTA, Sync. start ON 
19 (Reserved) 

20~30 (Reserved) 
 

31 
 

Axis stop interrupt occurred. Only this bit cannot be masked by 
8443_int_factor(). 
Refer to the function descriptions of _8443_set_axis_stop_int()  and  
_8443_mask_axis_stop_int() for the details. 

 



YA7233-0/6E 

- 134 - 

_8443_int_enable: 
This function is used to assign a Windows INT event. 

_8443_int_disable: 
This function is used to disable the Windows INT event. 

_8443_get_int_status: 
This function allows you to identify what causes the interrupt signal. After you get this value, the status 
register will be cleared to “0”. The return value is two 32 bits unsigned integers.  
 
The first one is for error_int_status, which cannot be masked by _8443_set_int_factor(). The 
definitions for bits of error_int_status are as follows: 
 
 

Error interrupt factors: error_int_status 
Bit Description  
0 +SL(Software Limit) stop 
1 −SL(Software Limit) stop 
2 (Reserved) 
3 General Comparator stop 
4 (Reserved) 
5 +EL(End Limit) 
6 −EL 
7 ALM(Alarm) 
8 (Reserved) 
9 (Reserved) 
10 SD(Ramp down) is ON and stop 
11 (Reserved) 
12 Interpolation error and stop 
13 Other axis stop during interpolations 
14 Pulser input buffer overflow and stop 
15 Interpolation counter overflow 
16 Encoder input signal error 
17 Pulser input signal error 

18~31 (Reserved) 
 



YA7233-0/6E 

- 135 - 

Event interrupt factors: The second one is for event_int_status, which can be masked by 
_8443_set_int_factor (). The definition for the bit of event_int_status is as follows: 
 

Event interrupt factors:  event_int_status  
Bit Description 
0 Normal stop 
1 Next command continued 
2 Continuous pre-register is empty and a new command can be written  
3 (Reserved) 
4 Acceleration start 
5 Acceleration end 
6 Deceleration start 
7 Deceleration end 
8 (Reserved) 
9 (Reserved) 
10 Out of step(Step-losing) occurs 
11 General comparator is satisfied  
12 Compared triggered for axis 0 and 1 
13 (Reserved) 
14 Latched for axis 2 and 3 
15 ORG is ON 
16 SD is ON 
17 (Reserved) 
18 (Reserved) 
19 CSTA, Sync. start is ON 

20~31 (Reserved) 
 
_8443_link_interrupt: 

This function is used to link interrupt call back functions. 
_8443_set_axis_stop_int: 

This function enables an axis stop interrupt factor. When enabled, an interrupt will occur regardless of a 
normal stop or an error stop. This interrupt condition can be turned on or off accompanied every motion 
command by setting _8443_mask_axis_stop_int(). Please refer to the function descriptions. This kind 
of interrupt condition is different from _8443_set_int_factor(). It can be controlled in each motion 
command, and it is possible to set an interrupt only when the final command is completed in continuous 
motion.  
Note 1: Enable the interrupt function _8443_int_enable() and _8443_int_control() before using the 

axis stop interrupt.  
Note 2: Execution of _8443_get_int_status () is also required for checking the interrupt status factor. 

Bit 31 of the event interrupt parameter “event_int_status” indicates that an axis stop interrupt 
has occurred. 

_8443_mask_axis_stop_int: 
This function will affect an axis stop interrupt factor which is set by _8443_set_axis_stop_int().This 
function is usually used in a continuous motion. When setting parameter “int_enable” to 1, only the 
final motion command will issue an axis stop interrupt in the progression of continuous operation. When 
setting parameter “int_enable” to 0, each motion command issues an axis stop interrupt in the 
progression of continuous motion.  
 



YA7233-0/6E 

- 136 - 

@Syntax 
C/C++ (Windows XP/7/8) 

I16 _8443_int_control(U16 cardNo, U16 intFlag ); 
I16 _8443_set_int_factor(I16 AxisNo, U32 int_factor );  
I16 _8443_int_enable(I16 CardNo, HANDLE *phEvent);  
I16 _8443_int_disable(I16 CardNo); 
I16 _8443_get_int_status(I16 AxisNo, U32 *error_int_status, U32 *event_int_status ); 
I16 _8443_link_interrupt(I16 CardNo, void ( __stdcall *callbackAddr)(I16 IntAxisNoInCard)); 
I16 _8443_set_axis_stop_int(I16 AxisNo, I16 axis_stop_int);  
I16 _8443_mask_axis_stop_int(I16 AxisNo, I16 int_disable); 

 
VB.NET (Windows XP/7/8) 

B_8443_int_control(ByVal cardNo As Short, ByVal intFlag As Short) As Short 
B_8443_set_int_factor(ByVal AxisNo As Short, ByVal int_factor As Integer) As Short 
B_8443_int_enable(ByVal CardNo As Short, ByRef phEvent As Int32) As Short 
B_8443_int_disable(ByVal CardNo As Short) As Short 
B_8443_get_int_status(ByVal AxisNo As Short, ByRef error_int_status As Integer, ByRef 
event_int_status As Integer) As Short 
B_8443_link_interrupt(ByVal CardNo As Short, ByVal lpCallBackProc As Integer) As Short 
B_8443_set_axis_stop_int(ByVal AxisNo As Short, ByVal axis_stop_int As Short) As Short 
B_8443_mask_axis_stop_int(ByVal AxisNo As Short, ByVal int_disable As Short) As Short 
 

C# (Windows XP/7/8) 
Int16 _8443_int_control(UInt16 CardNo, UInt16 intFlag ); 
Int16 _8443_set_int_factor(Int16 AxisNo, UInt32 int_factor ); 
Int16 _8443_int_enable( Int16 CardNo, ref IntPtr phEvent); 
Int16 _8443_int_disable(Int16 CardNo); 
Int16 _8443_get_int_status(Int16 AxisNo,ref UInt32 error_int_status,ref UInt32 event_int_status ); 
Int16 _8443_link_interrupt(Int16 CardNo, CallBack mycallback); 
Int16 _8443_set_axis_stop_int(Int16 AxisNo, Int16 axis_stop_int); 
Int16 _8443_mask_axis_stop_int(Int16 AxisNo, Int16 int_disable); 

 
@Argument 

CardNo: Board number (0 starts)  
AxisNo: Axis number (0 starts) 
intFlag: int flag, 0 or 1 (0: Disable, 1: Enable) 
int_factor: interrupt factor (refer to previous table) 
*phEvent: Interrupt event handler (Windows)  
*error_int_status: Error interrupt cause (refer to the previous table).  
*event_int_status: Event interrupt factor (refer to the previous table).  
int_disable: 0: Each motion command issues an axis stop interrupt. 
 1: Only the last motion command issues an axis stop interrupt in the progression of 
                 continuous motion. 
axis_stop_int: Axis stop interrupt (0: Disable  1: Enable ) 

 
@Return Code 

ERR_NoError : 0 
ERR_EventNotEnableYet : 37 
ERR_LinkIntError : 31 
ERR_CardNoError : 30 



YA7233-0/6E 

- 137 - 

6.16 Position Controls and Counters  
 
@Function Name 
_8443_get_position  - Get the value of feedback position counter 
_8443_set_position  - Set the value of feedback position counter 
_8443_get_command  - Get the value of command position counter 
_8443_set_command  - Set the value of command position counter 
_8443_get_error_counter  - Get the value of position error counter 
_8443_reset_error_counter  - Reset the position error counter 
_8443_get_general_counter  - Get the value of general purpose counter 
_8443_set_general_counter  - Set the general purpose counter 
_8443_get_target_pos  - Get the value of target position recorder 
_8443_reset_target_pos  - Reset target position recorder 
_8443_get_rest_command  - Get remaining pulse number until the end of operation 
_8443_check_rdp  - Get the ramping down point value data 
_8443_set_auto_rdp  - Enable the automatic setting ramping-down point 
 
@Function Description 
_8443_get_position(): 

This function is used to read the value in the feedback position counter.  
Note:  This is a value converted by move ratio set by _8443_set_move_ratio function. If the move 
ratio is 0.5, the value read will be twice of the counter value of PCL6046. The source of feedback 
counter is selectable by either function _8443_set_feedback_src() to be external EA/EB or command 
pulse output of PPCIe-8443.  

_8443_set_position(): 
This function is used to change the feedback position counter to a specified value.  
Note: This value to be set here will be calculated by move ratio function: _8443_set_move_ratio. If the 
move ratio is 0.5, the set value in the PCL6046 counter will be 1/2 of the given value. 

_8443_get_command(): 
This function is used to read the value of command position counter. The source of command position 
counter is the pulse output of PPCIe-8443. 

_8443_set_command(): 
This function is used to set the specified value in command position counter. 

_8443_get_error_counter(): 
This function is used to read the value of position error counter. 

_8443_reset_error_counter(): 
This function is used to clear the position error counter. 

_8443_get_general_counter(): 
This function is used to read the value of general purpose counter. 

_8443_set_general_counter(): 
This function is used to change the value and set the counting source of general counter. (By default, 
the counting source is pulser input.) 

_8443_get_target_pos(): 
This function is used to read the value of target position recorder. The target position recorder is 
maintained by PPCIe-8443 software driver. It records the position for the current running motion to 
settle down.  

_8443_reset_target_pos(): 
This function is used to set a new value for the target position recorder. It is necessary to call this 
function when a home return operation is completed or when a new feedback counter value is set by 
function _8443_set_position(). 

_8443_get_rest_command(): 
This function is used to read remaining pulse counts until the end of current operation. 

_8443_check_rdp(): 
This function is used to read the ramping down point data. The ramping down point is a position where 
a deceleration starts. The data is stored as the number of pulse count, and the axis will start to 
decelerate when the remaining pulse count reaches the set data. 



YA7233-0/6E 

- 138 - 

_8443_set_auto_rdp(): 
Enable the automatic ramping-down point setting. The default setting is manual setting (off) and the 
RPD value is calculated by DLL. If you select the automatic setting (On), the RPD value is calculated by 
motion ASIC PCL6046, but there are some limitations. We recommend you to use the default setting 
(manual setting). 

 
@Syntax 
C/C++ (DOS, Windows XP/7/8) 

I16 _8443_get_position(I16 AxisNo, F64 *pos);  
I16 _8443_set_position(I16 AxisNo, F64 pos);  
I16 _8443_get_command(I16 AxisNo, I32 *cmd);  
I16 _8443_set_command(I16 AxisNo, I32 cmd); 
I16 _8443_get_error_counter(I16 AxisNo, I16 *error_counter);  
I16 _8443_reset_error_counter(I16 AxisNo); 
I16 _8443_get_general_counter(I16 AxisNo, F64 *CntValue); 
I16 _8443_set_general_counter(I16 AxisNo,I16 CntSrc, F64 CntValue);  
I16 _8443_get_target_pos(I16 AxisNo, F64 *T_pos); 
I16 _8443_reset_target_pos(I16 AxisNo, F64 T_pos); 
I16 _8443_get_rest_command(I16 AxisNo, I32 *rest_command);  
I16 _8443_check_rdp(I16 AxisNo, I32 *rdp_command); 
I16 _8443_set_auto_rdp (I16 CardNo,I16 on_off); 

 
VB.NET (Windows XP/7/8) 

B_8443_get_position(ByVal AxisNo As Short, ByRef pos As Double) As Short 
B_8443_set_position(ByVal AxisNo As Short, ByVal pos As Double) As Short 
B_8443_get_command(ByVal AxisNo As Short, ByRef cmd As Integer) As Short 
B_8443_set_command(ByVal AxisNo As Short, ByVal cmd As Integer) As Short 
B_8443_get_error_counter(ByVal AxisNo As Short, ByRef Err As Short) As Short 
B_8443_reset_error_counter(ByVal AxisNo As Short) As Short 
B_8443_get_general_counter(ByVal AxisNo As Short, ByRef CntValue As Double) As Short 
B_8443_set_general_counter(ByVal AxisNo As Short, ByVal CntSrc As Short, ByVal CntValue As 
Double) As Short 
B_8443_get_target_pos(ByVal AxisNo As Short, ByRef pos As Double) As Short 
B_8443_reset_target_pos(ByVal AxisNo As Short, ByVal pos As Double) As Short 
B_8443_get_rest_command(ByVal AxisNo As Short, ByRef rest_command As Integer) As Short 
B_8443_check_rdp(ByVal AxisNo As Short, ByRef rdp_command As Integer) As Short 
B_8443_set_auto_rdp(ByVal CardNo As Short, ByVal on_off As Short) As Short 
 

C# (Windows XP/7/8) 
Int16 _8443_get_position(Int16 AxisNo, ref Double pos);Int16 _8443_get_position(Int16 AxisNo, ref 
Double pos);Int16 _8443_get_position(Int16 AxisNo, ref Double pos);Int16 _8443_get_position(Int16 
AxisNo, ref Double pos);Int16 _8443_get_position(Int16 AxisNo, ref Double pos);Int16 
_8443_get_position(Int16 AxisNo, ref Double pos);Int16 _8443_get_position(Int16 AxisNo, ref Double 
pos);Int16 _8443_get_position(Int16 AxisNo, ref Double pos);Int16 _8443_get_position(Int16 AxisNo, 
ref Double pos);Int16 _8443_get_position(Int16 AxisNo, ref Double pos);Int16 
_8443_get_position(Int16 AxisNo, ref Double pos); 
Int16 _8443_set_position(Int16 AxisNo, Double pos); 
Int16 _8443_get_command(Int16 AxisNo, ref Int32 cmd); 
Int16 _8443_set_command(Int16 AxisNo, Int32 cmd); 
Int16 _8443_get_error_counter(Int16 AxisNo, ref Int16 error); 
Int16 _8443_reset_error_counter(Int16 AxisNo); 
Int16 _8443_get_general_counter(Int16 AxisNo, ref Double CntValue); 
Int16 _8443_set_general_counter(Int16 AxisNo, Int16 CntSrc, Double CntValue); 
Int16 _8443_get_target_pos(Int16 AxisNo, ref Double pos); 
Int16 _8443_reset_target_pos(Int16 AxisNo, Double pos); 
Int16 _8443_get_rest_command(Int16 AxisNo, ref Int32 rest_command); 
Int16 _8443_check_rdp(Int16 AxisNo, ref Int32 rdp_command); 
Int16 _8443_set_auto_rdp(Int16 CardNo, Int16 on_off); 
 



YA7233-0/6E 

- 139 - 

@Argument 
AxisNo: Axis number (0 starts) 
Pos,*Pos: Feedback position counter value (Range: −2147483648 ~ 2147483647) 
cmd,*cmd: Command position counter value (Range: −2147483648 ~ 2147483647) 
error_counter,*error_counter: Position error counter value(Range: −32768 ~ 32767) 
T_pos,*T_pos: Target position recorder value (Range: −2147483648 ~ 2147483647) 
CntValue,*CntValue: General purpose counter value (Range: −2147483648 ~ 2147483647) 
rest_command,*rest_command: Remaining pulse count until the end of operation (Range: 
−2147483648 ~ 2147483647) 
rdp_command,*rdp_command: Ramping down point value data (range: 0 ~ 167777215) 
CntSrc: Source of general purpose counter input data selection: 

CntSrc=0: Command pulse 
CntSrc=1: EA / EB 
CntSrc=2: PA / PB Default setting) 
CntSrc=3: CLK / 2 

on_off: Automatic ramping-down point setting (ON/OFF)  
0 (off): Manual RDP: Ramp down point calculation (RDP calculated by DLL) 
1 (on): Automatic RDP Ramp down point calculation (RDP calculated by PCL6046) 

 
@Return Code 

ERR_NoError : 0 
ERR_PosOutOfRange : 13 
 

 

 

 



YA7233-0/6E 

- 140 - 

6.17 Position comparator and Latch 
 
@Function Name 
_8443_set_ltc_logic  - Set the LTC logic  
_8443_get_latch_data  - Get the Latch counter data  
_8443_set_soft_limit  - Set the Software limit  
_8443_enable_soft_limit  - Enable the Software limit function 
_8443_disable_soft_limit- - Disable the Software limit function 
_8443_set_error_counter_check - Set the out of step (Step losing) detection  
_8443_set_general_comparator  - Set the general purpose comparator  
_8443_set_trigger_comparator - Set the trigger comparator  
_8443_set_trigger_type  - Set the trigger output type 
_8443_check_compare_data  - Check the current comparator data 
_8443_check_compare_status  - Check the current comparator status  
_8443_set_auto_compare  - Set the comparator data source for auto loading  
_8443_build_compare_function  - Build the comparator data via constant interval 
_8443_build_compare_table  - Build the comparator data via compare table  
_8443_cmp_v_change  - Speed change by the comparator 
_8443_set_latch_source  - Set the latch signal for counter 
 
@Function Description 
_8443_set_ltc_logic(): 

This function is used to set the logic of a latch input. This function is applicable only for the last two axes 
in each PPCIe-8443 board.  

_8443_get_latch_data(): 
This function is used to read latched value of a counter when a latch signal is input.  

_8443_set_soft_limit(): 
This function is used to set a value of software limit. 

_8443_enable_soft_limit(),_8443_disable_soft_limit(): 
These two functions are used to enable/disable the software limit function. When enabled, the action of 
software limit will be exactly the same as a physical hardware limit. 

_8443_set_error_counter_check(): 
This function is used to enable out-of-step (step losing) checking function. By giving a tolerance value, 
the PPCIe-8443 will generate an interrupt (event_int_status, bit 10) when a position error counter 
exceeds the tolerance value. 

_8443_set_general_comparator(): 
This function is used to set a source and a comparing value for the general purpose comparator. When 
the source counter value reaches the comparing value, the PPCIe-8443 will generate an interrupt 
(event_int_status, bit 11). 

_8443_set_trigger_comparator(): 
This function is used to set a comparing method and a value for trigger comparator. When the feedback 
position counter value reaches the comparing value, the PPCIe-8443 will generate a trigger pulse 
output via CMP and an interrupt (event_int_status, bit 12) will be also sent to the host PC. If 
_8443_set_auto_compare() function is used, the comparing value set by this function will be ignored 
automatically.  
Note: it is applicable only for the first two axes (axis 0 and axis 1) in each PPCIe-8443 board. 

_8443_set_trigger_type(): 
This function is used to set a trigger output mode. 

_8443_check_compare_data(): 
This function is used to get the current comparing data of designated comparator. 

_8443_check_compare_status(): 
This function is used to get the status of all comparators. When some comparators are satisfied, the 
relative bit of cmp_sts will become ‘1’. When not satisfied, it will become ‘0’. 
Note 1: This function cannot be used when _8443_build_compare_function() and 
_8443_build_compare_table() are used.  
 



YA7233-0/6E 

- 141 - 

_8443_set_auto_compare(): 
This function is used to set a comparing data source of a trigger comparator. The source can be either 
a function or a table. 
This function is used to set comparison target data of the trigger comparator, and enable the automatic 
continuous comparison function. 
The comparison data target data can be generated by the _8444 build_compare_function, or a table 
composed of arbitrary data can be set. 
 

_8443_build_compare_function(): 
This function is used to build a comparing function by defining the start / end point and the interval. 
There is no limitation on the max number of comparing data. It will automatically load the final point 
after your end point. That is (end point + Interval x total points) x move ratio 
Note: Please turn off all interrupt functions while triggering is running. 
 

_8443_build_compare_table(): 
This function is used to build s comparing table by defining data array. The size of array is limited to 
1024.  
Note: Please turn off all interrupt functions while triggering is running. 
 

_8443_cmp_v_change(): 
This function is used to set up the comparator velocity change function. It is a v_change function but 
acts when general purpose comparator is satisfied. When this function is used, the parameter 
“CmpAction” of _8443_set_general_comparator() must be set to ‘3’.  
The compare data is also set by _8443_set_general_comparator(). The remaining distance, the 
velocity of the comparing point, the new velocity, and the acceleration time are set by the function 
_8443_cmp_v_change(). 
 

_8443_set_latch_source (): 
This function is used to set latched signals. 

 
@Syntax 
C/C++ (Windows XP/7/8) 

I16 _8443_set_ltc_logic(I16 AxisNo_2or3, I16 ltc_logic); 
I16 _8443_get_latch_data(I16 AxisNo, I16 LatchNo, F64 *Pos);  
I16 _8443_set_soft_limit(I16 AxisNo, I32 PLimit, I32 NLimit);  
I16 _8443_disable_soft_limit(I16 AxisNo); 
I16 _8443_enable_soft_limit(I16 AxisNo, I16 Action); 
I16 _8443_set_error_counter_check(I16 AxisNo, I16 Tolerance, I16 On_Off); 
I16 _8443_set_general_comparator(I16 AxisNo, I16 CmpSrc, I16 CmpMethod, I16 CmpAction, F64 
Data); 
I16 _8443_set_trigger_comparator(I16 AxisNo, I16 CmpSrc, I16 
CmpMethod, F64 Data); 
I16 _8443_set_trigger_type(I16 AxisNo, I16 TriggerType); 
I16 _8443_check_compare_data(I16 AxisNo, I16 CompType, F64 *Pos); 
I16 _8443_check_compare_status(I16 AxisNo, U16 *cmp_sts); 
I16 _8443_set_auto_compare(I16 AxisNo ,I16 SelectSrc); 
I16 _8443_cmp_v_change(I16 AxisNo, F64 Res_dist, F64 oldvel, F64 newvel, F64 AccTime) 
I16 _8443_set_latch_source(I16 AxisNo, I16 ltc_src); 
I16 _8443_build_compare_function(I16 AxisNo, F64 Start, F64 End, F64 Interval, I16 Device); 
I16 _8443_build_compare_table(I16 AxisNo, F64 *TableArray, I32 Size, I16 Device); 
 



YA7233-0/6E 

- 142 - 

VB.NET (Windows XP/7/8) 
B_8443_set_ltc_logic(ByVal AxisNo As Short, ByVal ltc_logic As Short) As Short 
B_8443_get_latch_data(ByVal AxisNo As Short, ByVal LatchNo As Short, ByRef Pos As Double) As 
Short 
B_8443_set_soft_limit(ByVal AxisNo As Short, ByVal PLimit As Integer, ByVal NLimit As Integer) As 
Short 
B_8443_disable_soft_limit(ByVal AxisNo As Short) As Short 
B_8443_enable_soft_limit(ByVal AxisNo As Short, ByVal Action As Short) As Short 
B_8443_set_error_counter_check(ByVal AxisNo As Short, ByVal Tolerance As Short, ByVal On_Off 
As Short) As Short 
B_8443_set_general_comparator(ByVal AxisNo As Short, ByVal CmpSrc As Short, ByVal CmpMethod 
As Short, ByVal CmpAction As Short, ByVal Data As Double) As Short 
B_8443_set_trigger_comparator(ByVal AxisNo As Short, ByVal CmpSrc As Short, ByVal CmpMethod 
As Short, ByVal Data As Double) As Short 
B_8443_set_trigger_type(ByVal AxisNo As Short, ByVal TriggerType As Short) As Short 
B_8443_check_compare_data(ByVal AxisNo As Short, ByVal CompType As Short, ByRef Pos As 
Double) As Short 
B_8443_check_compare_status(ByVal AxisNo As Short, ByRef cmp_sts As Short) As Short 
B_8443_set_auto_compare(ByVal AxisNo As Short, ByVal SelectSrc As Short) As Short 
B_8443_cmp_v_change(ByVal AxisNo As Short, ByVal Res_Dist As Double, ByVal OldVel As Double, 
ByVal NewVel As Double, ByVal Time As Double) As Short 
B_8443_set_latch_source(ByVal AxisNo As Short, ByVal ltc_src As Short) As Short 
B_8443_build_compare_function(ByVal AxisNo As Short, ByVal Start As Double, ByVal EndPoint As 
Double, ByVal Interval As Double, ByVal Device As Short) As Short 
B_8443_build_compare_table(ByVal AxisNo As Short, ByVal TableArray() As Double, ByVal Size As 
Integer, ByVal Device As Short) As Short 
 

C# (Windows XP/7/8) 
Int16 _8443_set_ltc_logic(Int16 AxisNo, Int16 ltc_logic); 
Int16 _8443_get_latch_data(Int16 AxisNo, Int16 LatchNo, ref Double Pos); 
Int16 _8443_set_soft_limit(Int16  AxisNo, Int32 PLimit, Int32 NLimit); 
Int16 _8443_enable_soft_limit(Int16  AxisNo, Int16  Action); 
Int16 _8443_disable_soft_limit(Int16  AxisNo); 
Int16 _8443_set_error_counter_check(Int16  AxisNo, Int16  Tolerance, Int16  On_Off); 
Int16 _8443_set_general_comparator(Int16  AxisNo, Int16  CmpSrc, Int16  CmpMethod, Int16  
CmpAction, Double Data); 
Int16 _8443_set_trigger_comparator(Int16  AxisNo, Int16  CmpSrc, Int16  CmpMethod, Double 
Data); 
Int16 _8443_set_trigger_type(Int16  AxisNo, Int16  TriggerType); 

 
@Argument 

AxisNo: Axis number (Axis 2 and 3 only) 
ltc_logic:  LTC signal logic  0: Rising edge  1: Falling edge 
AxisNo: Axis number (0 starts) 
Counter: Specify the counter to latch 

Counter = 1: Command counter 
Counter = 2: Feedback counter 
Counter = 3: Error counter 
Counter = 4: General purpose counter 

Pos: Latched counter value 
PLimit: Software limit value in positive direction  
NLimit: Software limit value in negative direction  
Action: Response for software limit ON 

Action = 0: INT only  
Action = 1: Immediate stop 
Action = 2: Decelerate and stop 
Action = 3: Reserved  

Tolerance: Tolerance of out-of-step (step losing) detection 



YA7233-0/6E 

- 143 - 

On_Off: Enable / Disable of out-of-step (step-losing) detection 
On_Off = 0: Disable  
On_Off = 1: Enable  

 
CmpSrc: Set comparing source counter  

CmpSrc = 0: Command counter 
CmpSrc = 1: Feedback position counter  
CmpSrc = 2: Position error counter 
CmpSrc = 3: General purpose counter 

CmpMethod: Comparing method  
CmpMethod = 0: Comparing function off  
CmpMethod = 1: Cmp value = Counter (No direction designation) 
CmpMethod = 2: Cmp value = Counter (Positive direction) 
CmpMethod = 3: Cmp value = Counter (Negative direction) 
CmpMethod = 4: Cmp value > Counter 
CmpMethod = 5: Cmp value < Counter 

CmpAction: Reaction when the comparison is satisfied 
CmpAction = 0: INT only  
CmpAction = 1: Immediate stop 
CmpAction = 2: Ramp down and stop 
CmpAction = 3: Speed change  

Data: Comparing value 
TriggerType: Selection of type of trigger output mode 

TriggerType = 0: Normal high level (default value) 
TriggerType = 1: Normal low level 

CompType: Comparator selection  
CompType = 1 Positive side software limit 
CompType = 2 Negative side software limit 
CompType = 3 Error counter comparator value 
CompType = 4 General purpose comparator value 
CompType = 5 Trigger output comparator value  

cmp_sts: Comparator status bit data 
Bit: 0 Positive side software limit ON 
Bit: 1 Minus side software limit ON 
Bit: 2 Error counter comparator ON 
Bit: 3 General purpose comparator ON 
Bit: 4 Trigger comparator ON (Axis 0 and 1 only) 

SelectSrc: Automatic continuous comparing function setting 
SelectSrc=0: Disable automatic comparing function 
SelectSrc=1: Use FIFO (Enable automatic comparing function) 

Start: Start point setting (for generating a constant interval table) 
End: End point setting (for generating a constant interval table) 
Interval: Interval setting (for generating a constant interval table) 
TableArray: Comparing data table 
Size: Size of table array (Element count) 
Device: Selection of reload device for comparator data:  

Device=0: RAM and Interrupt 
Device=1: FIFO 

Res_dist: The remaining distance from the compare point to the target position. 
oldvel: Velocity at compare point. 
newvel: New velocity 
AccTime: Acceleration time 
Itc_src: Latch source (signal/condition) 

0: LTC input  
1: Comparator 4 is satisfied  
2: Comparator 5 is satisfied  
3: ORG signal 
 



YA7233-0/6E 

- 144 - 

@Return Code 
ERR_NoError : 0 
ERR_CompareNoError : 18 
ERR_CompareMethodError : 17 
ERR_CompareAxisError : 19 
ERR_CompareTableSizeError : 20 
ERR_CompareFunctionError : 21 
ERR_CompareTableNotReady : 22 
ERR_CompareLineNotReady : 23 
ERR_HardwareCompareAxisWrong : 32 
ERR_AutoCompareSourceWrong : 33 
ERR_CompareDeviceTypeError : 34 



YA7233-0/6E 

- 145 - 

6.18 Continuous Operation 
 
@Function Name 
_8443_set_continuous_move  - Set enable/disable of a continuous operation. 
_8443_check_continuous_buffer  - Check if the buffer is empty. 
 
@Function Description 
_8443_set_continuous_move(): 

This function is necessary to be executed before or after a continuous motion. 
_8443_check_continuous_buffer(): 

This function is used to detect if the command pre-register is empty. When the command pre-register is 
empty, you can write a next operation command. The next command will be overwritten in the 2nd 
pre-register. 
 

@Syntax 
C/C++ (DOS, Windows XP/7/8) 

I16 _8443_set_continuous_move(I16 AxisNo, I16 conti_flag);  
I16 _8443_check_continuous_buffer(I16 AxisNo); 

 
VB.NET (Windows XP/7/8) 

B_8443_set_continuous_move(ByVal AxisNo As Short, ByVal conti_logic As Short) As Short 
B_8443_check_continuous_buffer(ByVal AxisNo As Short) As Short 
 

C# (Windows XP/7/8) 
Int16 _8443_set_continuous_move(Int16  AxisNo, Int16  conti_logic); 
Int16 _8443_check_continuous_buffer(Int16  AxisNo); 

 
@Argument 

AxisNo: Axis number (0 starts) 
conti_flag: Continuous operation enable/disable setting 

conti_flag=0: Continuous operation disabled 
conti_flag=1: Continuous operation enabled 

 
@Return Code 

ERR_NoError 
 

Return value of _8443_check_continuous_buffer() : 
0: All command registers are empty 
1: Count register is in-use (2 remaining) 
2: Pre-register 1 is in-use. (1 remaining)  
3: Pre-register 2 is in-use (0 remaining) 

 



YA7233-0/6E 

- 146 - 

6.19 Multiple Axes Simultaneous Operation 
 
@Function Name 
_8443_set_tr_move_all  - Multi-axis simultaneous relative trapezoidal positioning operation setup 
_8443_set_ta_move_all  - Multi-axis simultaneous absolute trapezoidal positioning operation setup 
_8443_set_sr_move_all  - Multi-axis simultaneous relative S-curve positioning operation setup 
_8443_set_sa_move_all  - Multi-axis simultaneous absolute S-curve positioning operation setup 
_8443_start_move_all - Start a simultaneous multi-axis operation 
_8443_stop_move_all  - Stop a simultaneous multi-axis operation 
_8443_set_sync_option - Sync operation setting with other axes 
_8443_set_sync_stop_mode  - Setting of the stop mode of CSTOP signal. 
 
@Function Description 

These functions are related to simultaneous operations of multi-axis even between different boards. 
The simultaneous multi-axis operation is to start or to stop moving specified axes at the same time. The 
move axes are specified by parameter “AxisArray” and the number of axes are defined by the 
parameter “TotalAxes” in _8443_set_tr_move_all(). 
 
The function _8443_set_xx_move_all()  is used for the operation setting (velocity, 
acceleration/deceleration velocities, moving amount) of the axis performs the same operation and 
places it in the start input wait status.  
_8443_start_move_all() will send a simultaneous start (STA) signal to the axes in the wait status.  
The axes will simultaneously start by the (STA) signal. 
_8443_stop_move_all () will send a simultaneous stop signal (STP) to the axes for which 
simultaneous operation has been set.  
 
Note: It is necessary to make connections according to section 3.14 “Simultaneous Start/Stop Signals: 
STA and STP”, so that you can use the above two functions to perform a simultaneous operation 
between different boards. . 
 
The following code shows how to utilize these functions. This code can perform a relative positioning 
move between axis 0 (axis 0 in board 0) and axis 4 (axis 0 in board 1) by the moving amounts of 8000.0 
and 120000.0 respectively. It is not an interpolation operation, but if you set the velocities and the 
acceleration times proportional to the ratio of distances, the axes will arrive at the end points at the 
same time (simultaneous motion). 
 
int main() 
{ 

I16  axes[2] = {0, 4}; 
F64  dist[2] = {8000, 12000}, 
str_vel[2]={0.0, 0.0}, 
max_vel[2]={4000.0, 6000.0}, 
Tacc[2]={0.04, 0.06}, 
Tdec[2]= {0.04, 0.06}; 
 
_8443_set_tr_move_all(2, axes, dist, str_vel, max_vel, Tacc, Tdec); 
_8443_start_move_all(axes[0]); 
 
return   ERR_NoError; 

} 



YA7233-0/6E 

- 147 - 

_8443_set_sync_option(): 
This will set up a simultaneous start of two or more different command operation groups. For example, 
if you want to start one 2-axis linear interpolation and one 1-axis single operation simultaneously, you 
can turn on this option and set up before sending a start command to each axes.   
In this function, it is also possible to start by waiting for completion of the operation of the other axis. For 
example, axis1 can start when the operation of axis 2 is completed.  
 

_8443_set_sync_stop_mode(): 
This function is used to set up the mode of simultaneous stop. There are two types of stop mode: 
immediate stop or deceleration stop. When the execution of _8443_stop_move_all() or STP signal 
input, the axes will stop according to this setting. 
 

@ Syntax 
C/C++ (Windows XP/7/8) 

I16 _8443_set_tr_move_all(I16 TotalAxes, I16 *AxisArray, F64 *DistA, F64 *StrVelA, F64 *MaxVelA, 
F64 *TaccA, F64 *TdecA); 
I16 _8443_set_sa_move_all(I16 TotalAx, I16 *AxisArray, F64 *PosA, F64 *StrVelA, F64 *MaxVelA, 
F64 *TaccA, F64 *TdecA, F64 *SVaccA, F64 *SVdecA); 
I16 _8443_set_ta_move_all(I16 TotalAx, I16 *AxisArray, F64 *PosA, F64 *StrVelA, F64 *MaxVelA, F64 
*TaccA, F64 *TdecA); 
I16 _8443_set_sr_move_all(I16 TotalAx, I16 *AxisArray, F64 *DistA, F64 *StrVelA, F64 *MaxVelA, F64 
*TaccA, F64 *TdecA, F64 *SVaccA, F64 *SVdecA); 
I16 _8443_start_move_all(I16 FirstAxisNo);  
I16 _8443_stop_move_all(I16 FirstAxisNo); 
I16 _8443_set_sync_option(I16 AxisNo, I16 sync_stop_on, I16 cstop_output_on, I16 sync_option1, I16 
sync_option2);  
I16 _8443_set_sync_stop_mode(I16 AxisNo, I16 stop_mode); 

 
VB.NET (Windows XP/7/8) 

B_8443_set_tr_move_all(ByVal TotalAxes As Short, ByVal AxisArray() As Short, ByVal DistA() As 
Double, ByVal StrVelA() As Double, ByVal MaxVelA() As Double, ByVal TaccA() As Double, ByVal 
TdecA() As Double) As Short 
B_8443_set_sa_move_all(ByVal TotalAx As Short, ByVal AxisArray() As Short, ByVal PosA() As 
Double, ByVal StrVelA() As Double, ByVal MaxVelA() As Double, ByVal TaccA() As Double, ByVal 
TdecA() As Double, ByVal SVaccA() As Double, ByVal SVdecA() As Double) As Short 
B_8443_set_ta_move_all(ByVal TotalAx As Short, ByVal AxisArray() As Short, ByVal PosA() As 
Double, ByVal StrVelA() As Double, ByVal MaxVelA() As Double, ByVal TaccA() As Double, ByVal 
TdecA() As Double) As Short 
B_8443_set_sr_move_all(ByVal TotalAx As Short, ByVal AxisArray() As Short, ByVal DistA() As 
Double, ByVal StrVelA() As Double, ByVal MaxVelA() As Double, ByVal TaccA() As Double, ByVal 
TdecA() As Double, ByVal SVaccA() As Double, ByVal SVdecA() As Double) As Short 
B_8443_start_move_all(ByVal FirstAxisNo As Short) As Short 
B_8443_stop_move_all(ByVal FirstAxisNo As Short) As Short 
B_8443_set_sync_option(ByVal AxisNo As Short, ByVal sync_stop_on As Short, ByVal 
cstop_output_on As Short, ByVal sync_option1 As Short, ByVal sync_option2 As Short) As Short 
B_8443_set_sync_stop_mode(ByVal AxisNo As Short, ByVal stop_mode As Short) As Short 
 

C# (Windows XP/7/8) 
Int16 _8443_set_tr_move_all(Int16  TotalAxes,ref Int16  AxisArray,ref Double DistA,ref Double 
StrVelA,ref Double MaxVelA,ref Double TaccA,ref Double TdecA); 
Int16 _8443_set_ta_move_all(Int16  TotalAx,ref Int16  AxisArray,ref Double PosA,ref Double 
StrVelA,ref Double MaxVelA,ref Double TaccA,ref Double TdecA); 
Int16 _8443_set_sr_move_all(Int16  TotalAx,ref Int16  AxisArray,ref Double DistA,ref Double 
StrVelA,ref Double MaxVelA,ref Double TaccA,ref Double TdecA,ref Double SVaccA,ref Double 
SVdecA); 
Int16 _8443_set_sa_move_all(Int16  TotalAx,ref Int16  AxisArray,ref Double PosA,ref Double 
StrVelA,ref Double MaxVelA,ref Double TaccA,ref Double TdecA,ref Double SVaccA,ref Double 
SVdecA); 
Int16 _8443_start_move_all(Int16  FirstAxisNo); 
Int16 _8443_stop_move_all(Int16  FirstAxisNo); 



YA7233-0/6E 

- 148 - 

Int16 _8443_set_sync_option(Int16 AxisNo, Int16 sync_stop_on, Int16 cstop_output_on, Int16 
sync_option1, Int16 sync_option2); 
Int16 _8443_set_sync_stop_mode(Int16 AxisNo, Int16 stop_mode); 
 

@Argument 
TotalAx: number of axes for simultaneous operation (1 ~ 48) 
AxisArray: specified axes number array designated to simultaneous operation 

Note: Be sure to store axis numbers in the array in ascending order.  
DistA: Array containing movement amount / target position of each axis (number of pulse) 
StrVelA: Array containing initial moving speed of each axis (pps) 
MaxVelA: Array containing the maximum moving speed of each axis (pps) 
TaccA: Array containing acceleration time of each axis (pps) 
TdecA: Array containing deceleration time of each axis (pps) 
SVaccA: Array containing S-curve part in the acceleration of each axis (pps) 
SVdecA: Array containing S-curve part in the deceleration of each axis (pps) 
FirstAxisNo: The first axis number in the target Axis Array 
sync_stop_on: Simultaneous stop (STP) signal setting; Enabled/Disabled.  
 0: Disabled, 1: Enabled  
cstop_output_on: Setting of automatic output of STP signal at abnormal stop by ALM, EL, etc.  

0: Disable, 1: Enable 
sync_option1: Select command start type: 

0: Default (immediately start by operation commands） 
1: Wait for simultaneous start input _8443_start_move_all() or start with STA signal input. 
2: Reserved  
3: Check Sync_option 2 condition and start 

sync_option2: Example; Bit is designated, and multi-axis setting is available. 
0: Default value (No stand by) 
1: Start when axis 0 stops 
2: Start when axis 1 stops 
4: Start when axis 2 stops 
8: Start when axis 3 stops  
5: Start when both axis 0 and axis 2 stop 
15: Start when all axis 0 to 3 stop  

stop_mode: Set simultaneous stop mode 
0: Immediately stop  
1: Decelerate to stop 

 
@Return Code 

ERR_NoError : 0 
ERR_SpeedError : 11 



YA7233-0/6E 

- 149 - 

6.20 Extended General-Purpose Input/Output 
 
@Function Name 
_8443_set_gpio_output - Set general purpose output (whole port) 
_8443_get_gpio_output - Obtain the status of general purpose output (whole port) 
_8443_get_gpio_input - Obtain the status of general purpose input (whole port) 
_8443_set_gpio_output_CH - Set general purpose output 
_8443_get_gpio_output_CH - Obtain the status of general purpose output 
_8443_get_gpio_input_CH - Obtain the status of general purpose input 
 
@Function Description 
_8443_set_gpio_output: 

Set ON/OFF status for general purpose output signal (whole port) 
_8443_get_gpio_output: 

Obtain ON/OFF status for general purpose output signal (whole port) 
_8443_get_gpio_input: 

Obtain ON/OFF status for general purpose input signal (whole port) 
_8443_set_gpio_output_CH: 

Set ON/OFF status for general purpose output signal (bit specified) 
_8443_get_gpio_output_CH: 

Obtain ON/OFF status for general purpose output signal (bit specified) 
_8443_get_gpio_input_CH: 

Obtain ON/OFF status for general purpose input signal (bit specified) 
 
@Syntax 
C/C++ (Windows XP/7/8) 

I16 FNTYPE _8443_set_gpio_output(I16 CardNo, U16 DoValue); 
I16 FNTYPE _8443_get_gpio_output(I16 CardNo, U16 *DoValue); 
I16 FNTYPE _8443_get_gpio_input(I16 CardNo, U16 *DiValue); 
I16 FNTYPE _8443_set_gpio_output_CH(I16 CardNo, U16 Channel, U16 Value); 
I16 FNTYPE _8443_get_gpio_output_CH(I16 CardNo, U16 Channel, U16 *Value); 
I16 FNTYPE _8443_get_gpio_input_CH(I16 CardNo, U16 Channel, U16 *Value); 
 

VB.NET (Windows XP/7/8) 
B_8443_set_gpio_output(ByVal CardNo As Short, ByVal DoValue As Integer) As Short 
B_8443_get_gpio_output(ByVal CardNo As Short, ByRef DoValue As Integer) As Short 
B_8443_get_gpio_input(ByVal CardNo As Short, ByRef DiValue As Integer) As Short 
B_8443_set_gpio_output_CH(ByVal CardNo As Short, ByVal Channel As Short, ByVal Value As 
Integer) As Short 
B_8443_get_gpio_output_CH(ByVal CardNo As Short, ByVal Channel As Short, ByRef Value As 
Integer) As Short 
B_8443_get_gpio_input_CH(ByVal CardNo As Short, ByVal Channel As Short, ByRef Value As 
Integer) As Short 
 

C# (Windows XP/7/8) 
Int16 _8443_set_gpio_output(Int16 CardNo, UInt16 DoValue); 
Int16 _8443_get_gpio_output(Int16 CardNo, ref UInt16 DoValue); 
Int16 _8443_get_gpio_input(Int16 CardNo, ref UInt16 DiValue); 
Int16 _8443_set_gpio_output_CH(Int16 CardNo, Int16 Channel, UInt16 Value); 
Int16 _8443_get_gpio_output_CH(Int16 CardNo, Int16 Channel, ref UInt16 Value); 
Int16 _8443_get_gpio_input_CH(Int16 CardNo, Int16 Channel, ref UInt16 Value); 



YA7233-0/6E 

- 150 - 

@Argument 
CardNo: Board number (0 starts) 
Channel: Bit number (0 ~ 15) 
DoValue: All output value (whole port) 
DiValue: All input value (whole port) 
Value: ON/OFF value for specified bit (0 or 1) 

 
@Return Code 

ERR_NoError : 0 
 
 



YA7233-0/6E 

- 151 - 

6.21 Error Code List  
 

Return 
Code Identifier  Description  

0 ERR_NoError No error  

1 ERR_BoardNoInit Initialization incomplete 

2 ERR_InvalidBoardNumber Reserved 

3 ERR_InitializedBoardNumber Reserved 

4 ERR_BaseAddressError Reserved 

5 ERR_BaseAddressConflict Reserved 

6 ERR_DuplicateBoardSetting Reserved 

7 ERR_DuplicateIrqSetting Reserved 

8 ERR_PCIBiosNotExist Board not found 

9 ERR_PCIIrqNotExist Reserved 

10 ERR_PCICardNotExist Reserved 

11 ERR_SpeedError Speed specification error (MaxVel: 0, etc.) 

12 ERR_MoveRatioError move_ratio setting error 

13 ERR_PosOutOfRange Feedback counter setting value error 
(set with −134217728 ~ 134217727 ) 

14 ERR_AxisAlreadyStop The axis is already stopped.  

15 ERR_AxisArrayError Reserved 

16 ERR_SlowDownPointError Ramping down point value is invalid 

17 ERR_CompareMethodError Comparator method specification error 

18 ERR_CompareNoError Comparator value error 

19 ERR_CompareAxisError Comparator axis specification error  

20 ERR_CompareTableSizeError Comparator table size is out of range 

21 ERR_CompareFunctionError Comparator function data setting error 

22 ERR_CompareTableNotReady Comparator table RAM error 

23 ERR_CompareLineNotReady Comparator function RAM error 

24 ERR_NoCardFound PPCIe-8443 board not detected  

 



YA7233-0/6E 

- 152 - 

Return 
Code Identifier  Description  

25 ERR_LatchNoError Latch counter specification error 

26 ERR_AxisRangeError Axis number specification error  

27 ERR_DioNoError General purpose output port number specification error 

28 ERR_PChangeSlowDownPointError Position override error  
(The specified position is closer than the ramp down point.) 

29 ERR_SpeedChangeError Speed change specification value error 

30 ERR_CardNoError Board number specification error 

31 ERR_LinkIntError LinkINT error  
(thread for interrupt is not created yet) 

32 ERR_HardwareCompareAxisWrong Comparator function axis number specification error 

33 ERR_AutoCompareSourceWrong Comparator function comparison counter specification error 

34 ERR_CompareDeviceTypeError Comparator function device specification error 

35 ERR_PulserHomeTypeError Pulser home return type selection error 

36 ERR_EventAlreadyEnable int_enable error 
(event is already created) 

37 ERR_EventNotEnableYet Event setting error (event disabled) 

38 ERR_LineArcParameterError Reserved 

39 ERR_ConfigFileOpenError Configuration file cannot be opened 

40 ERR_CompareFIFONotReady Comparator FIFO initialization incomplete error 

41 ERR_EventInitError Thread initialization error 

42 ERR_MemAllocError Memory allocation error  

43 ERR_FIFOSourceERROR Comparator function FIFO source specification error 

44 ERR_OtherProcessExist Error; other process is being executed 

45 ERR_DelayTimeError Delay time setting error  

46 ERR_DelayDistError Delay distance setting error  

47 ERR_FIFOModeOn FIFO mode error 

48 ERR_FIFOBusy Reserved 

49 ERR_OpenDriverFailed Driver open failed   

 
 
 



YA7233-0/6E 

- 153 - 

Return Code Identifier  Description  

50 ERR_OSVersionError OS version error 

51 ERR_OwnerSet Reserved 

52 ERR_SignalHandle Reserved 

53 ERR_SignalNotify Reserved 

54 ERR_AllocateMemory Reserved 

55 ERR_VChangeTimeError Velocity override time setting error 

56 ERR_EventInvalid Reserved 

57 ERR_ErrorIntCome Reserved 

58 ERR_Unknown Reserved 

59 ERR_WaitAbandoned Reserved 

60 ERR_WaitDelayTimeOut Reserved 

61 ERR_NoSeqAttached Reserved 

62 ERR_CardTypeWrong Board type error 

63 ERR_RotarySourceWrong Reserved 

64 ERR_PXISourceWrong Reserved 

65 ERR_PXIChannelWrong Reserved 

66 ERR_PulseModeError Reserved 

67 ERR_EventMapRangeError Reserved 

68 ERR_EventTypeError Reserved 

69 ERR_AAModeWrong Reserved 

70 ERR_MotionBusy Still operating  

71 ERR_ArraySizeTooBig Reserved 

72 ERR_UserCodeWrite Reserved 

73 ERR_SecurityCode Security code error 

74 ERR_CompareDataNotReady Compared data is not ready 

 
 
 



YA7233-0/6E 

- 154 - 

Return Code Identifier  Description  

75 ERR_ParameterError Invalid parameter  

76 ERR_PitchCompensationWrong Reserved 

77 ERR_CanNotPitchCompensation Reserved 

78 ERR_CanNotUseInPitchCompMode Reserved 

79 ERR_PitchCompNotEnable Reserved 

80 ERR_DriverVersionError Wrong driver version  

 
(Note) Errors in “Reserved” are for manufacturer maintenance purpose and basically do not 

occur.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



YA7233-0/6E 

- 155 - 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

 

 

 

 

 

      URL: http://www.pulsemotor.com/ 
 

Head Office: No.16-13, 2-chome, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan 
        TEL: 81-3-3813-8841    FAX: 81-3-3813-8665 

 
  Issued in June, 2018 

CAUTION  The descriptions in this specification may be changed without prior notice 
to improve performance or quality. 

http://www.pulsemotor.com/

	1. Introduction
	1.1 Features
	1.2 Specification
	1.3 Software Supporting
	1.3.1 Programming Library
	1.3.2 PPCIe8443 Utility


	2. Installation
	2.1 Accessories
	2.2 PPCIe-8443 Dimensions
	2.3 Hardware Installation
	2.3.1 Hardware Configuration
	2.3.2 PCIe Slot Selection
	2.3.3 Installation Procedures
	2.3.4 Trouble Shooting
	2.3.5 Precautions (Sleep function)

	2.4 Software Driver Installation
	2.4.1 Precautions for Installation to Windows 7.
	2.4.2 Installation procedure for 32 bit Windows
	2.4.3 Installation Procedure for 64 bit Windows

	2.5 CN1 Pin Assignment: Emergency Input
	2.6 CN2 Pin Assignment: Main Connector
	2.7 P1 Pin Assignment: Manual Pulser Input
	2.8 K1/K2 Pin Assignment: Simultaneous Start/Stop
	2.9 CN5 Pin Assignment: General Purpose Input/Output
	2.10 Jumper Setting for Pulse Output
	2.11 SW1 Board Index setting
	2.12 SW2 Switch setting for the logic of EL
	2.13 SW3 Switch Setting to Enable Emergency Input

	3. Signal Connections
	3.1 Pulse Output Signals OUT and DIR
	3.2 Encoder Feedback Signals: EA, EB, and EZ
	3.3 Origin Signal ORG (Home return)
	3.4 End-Limit Signals: PEL and MEL
	3.5 Ramping-Down & PCS
	3.6 In-Position Signal: INP
	3.7 Alarm Signal: ALM
	3.8 Deviation Counter Clear Signal: ERC
	3.9 General Purpose Output Signal SVON
	3.10 General Purpose Input Signal: RDY
	3.11 Position Comparator Output: CMP
	3.12 Position Latch Input: LTC
	3.13 Pulser Input Signals: PA and PB
	3.14 Simultaneous Start/Stop Signals: STA and STP
	3.15 Emergency Input EMG
	3.16 Extended General Purpose Input / Output: EDI and EDO
	3.17 Power Supply Configuration

	4. Operation Theorem
	4.1 Motion control mode
	4.1.1 Output Pulse Mode
	4.1.2 Velocity Mode Operation
	4.1.3 Positioning Operation for Single Axis
	4.1.4 S-curve Profile Acceleration / Deceleration Operation
	4.1.5 Linear Interpolation for Two to Four Axes
	4.1.6 Circular Interpolation for Two Axes
	4.1.7 Circular Interpolation with Acceleration / Deceleration Time
	4.1.8 Helical Interpolation
	4.1.9 The Relationship between Velocity and Acceleration Time
	4.1.10 Continuous Operation
	4.1.11 Home Return Operation (Origin Return)
	4.1.12 Manual pulser operation
	4.1.13 Timer Mode
	4.1.14 Pulser Interpolation

	4.2 The Motor Driver Interface
	4.2.1 INP
	4.2.2 ALM
	4.2.3 ERC
	4.2.4 SVON and RDY

	4.3 Mechanical Input Interface and I/O Status
	4.3.1 SD / PCS
	4.3.2 EL
	4.3.3 ORG
	4.3.4 EMG

	4.4 Counters
	4.4.1 Command Position Counter
	4.4.2 Feedback Position Counter
	4.4.3 Position Error Counter
	4.4.4 General Purpose Counter
	4.4.5 Target Position Recorder

	4.5 Multiple PPCIe-8443 operation
	4.6 Change Position or Speed On The Fly (Override Function)
	4.6.1 Change Speed On The Fly (Speed Override)
	4.6.2 Change Position On The Fly (Position Override)

	4.7 Comparator and Latch
	4.7.1 Comparator of PPCIe-8443
	4.7.2 Position Comparator
	4.7.3 Position Latch

	4.8 Backlash Compensator and Vibration Suppression
	4.9 Software Limit Function
	4.10 Interrupt Control
	4.11  Idling Control

	5. PPCIe-8443 Utility
	5.1 Execute PPCIe-8443 Utility
	5.2 About PPCIe-8443 Utility
	5.3 PPCIe8443 Utility Screen Introduction
	5.3.1 Board ID Switch Enable / Disable Screen
	5.3.2 Main Screen
	5.3.3 Interface I/O Configuration Screen
	5.3.4 Pulse I/O and interrupt configuration screen
	5.3.5 Operation screen


	6. Function Library
	6.1 List of Functions
	6.2 C/C++ Programming Library
	6.3 Initialization
	6.4 Pulse Input/Output Configuration
	6.5 Velocity Mode Operation
	6.6 Single Axis Position Operation
	6.7 Linear Interpolation Operation
	6.8 Circular Interpolation Operation
	6.9 Helical Interpolation Operation
	6.10 Home Return Mode (Origin Return)
	6.11 Manual Pulser Operation
	6.12 Motion Status
	6.13 Motion Interface I/O
	6.14 Motion I/O Monitoring
	6.15 Interrupt Operation
	6.16 Position Controls and Counters
	6.17 Position comparator and Latch
	6.18 Continuous Operation
	6.19 Multiple Axes Simultaneous Operation
	6.20 Extended General-Purpose Input/Output
	6.21 Error Code List


