
PPCI7443
Advanced 4 Axes Servo / Stepper

Motion Control Card
User's Guide

(Version : 2.00)

Table of Contents •••• i

Table of Contents

INTRODUCTION.. 1

1.1 FEATURES... 4

1.2 SPECIFICATIONS.. 5

1.3 SOFTWARESUPPORTING.. 6

1.3.1 Programming Library .. 6

1.3.2 PPCI7443 Utility.. 6

INSTALLATION... 7

2.1 WHAT YOU HAVE ... 7

2.2 PPCI7443 OUTLINE DRAWING .. 8

2.3 HARDWARE INSTALLATION.. 9

2.3.1 Hardware configuration... 9

2.3.2 PCI slot selection ... 9

2.3.3 Installation Procedures .. 9

2.3.4 Trouble shooting: ... 9

2.4 SOFTWAREDRIVER INSTALLATION .. 10

2.5 CN1 PIN ASSIGNMENTS: EXTERNAL POWERINPUT...................................... 10

2.6 CN2 PIN ASSIGNMENTS: MAIN CONNECTOR.. 11

2.7 CN3 PIN ASSIGNMENTS: MANUAL PULSERINPUT.. 12

2.8 CN4 PIN ASSIGNMENTS: SIMULTANEOUS START/STOP................................. 12

2.9 CN5 PIN ASSIGNMENT: TTL OUTPUT... 13

2.10 JUMPERSETTING FORPULSEOUTPUT .. 13

2.11 SWITCH SETTING FOREL LOGIC.. 14

SIGNAL CONNECTIONS.. 15

3.1 PULSEOUTPUTSIGNALS OUT AND DIR.. 16

3.2 ENCODERFEEDBACK SIGNALS EA, EBAND EZ... 18

3.3 ORIGIN SIGNAL ORG .. 21

3.4 END-LIMIT SIGNALS PELAND MEL.. 22

3.5 RAMPING-DOWN & PCS .. 23

3.6 IN-POSITIONSIGNAL INP... 24

3.7 ALARM SIGNAL ALM.. 25

3.8 DEVIATION COUNTERCLEAR SIGNAL ERC.. 26

3.9 GENERAL-PURPOSESIGNAL SVON.. 27

3.10 GENERAL-PURPOSESIGNAL RDY.. 28

3.11 POSITION COMPARE OUTPUT PIN: CMP... 29

3.12 POSITION LATCH INPUT PIN: LTC ... 30

3.13 PULSERINPUTSIGNALS PA AND PB .. 31

3.14 SIMULTANEOUSLY START/STOPSIGNALS STA AND STP 32

3.15 GENERAL-PURPOSEDTTL OUTPUT.. 33

OPERATION THEOREM.. 35

ii •••• Table of Contents

4.1 MOTION CONTROLMODES.. 35

4.1.1 Pulse Command Output.. 36

4.1.2 Velocity mode motion ... 39

4.1.3 Trapezoidal Motion Profile .. 40

4.1.4 S-curve Motion Profile ... 42

4.1.5 Linear interpolation for 2~4 axes... 44

4.1.6 Circular interpolation for 2 axes.. 48

4.1.7 Circular interpolation with Acc/Dec time .. 50

4.1.8 The Relationship between Velocity and Acceleration Time................ 51

4.1.9 Continuous motion ... 54

4.1.10 Home Return Mode .. 59

4.1.11 Manual Pulser Mode.. 67

4.1.12 Timer Mode .. 67

4.1.13 Pulser Interpolation ... 68

4.2 THE MOTOR DRIVER INTERFACE... 69

4.2.1 INP .. 69

4.2.2 ALM... 70

4.2.3 ERC... 71

4.2.4 SVON and RDY .. 71

4.3 THE LIMIT SWITCH INTERFACE AND I/O STATUS.. 72

4.3.1 SD/PCS... 72

4.3.2 EL.. 73

4.3.3 ORG .. 73

4.4 THE COUNTERS... 75

4.4.1 Command position counter .. 75

4.4.2 Feedback position counter ... 75

4.4.3 Position error counter.. 77

4.4.4 General-Purposed counter ... 77

4.4.5 Target position recorder .. 79

4.5 MULTIPLE PPCI7443 CARDSOPERATION.. 80

4.6 CHANGE POSITION OR SPEED ON THE FLY.. 81

4.6.1 Change speed on the fly.. 81

4.6.2 Change position on the fly.. 85

4.7 POSITION COMPARE ANDLATCH .. 87

4.7.1 Comparators of PPCI7443... 87

4.7.2 Position compare.. 88

4.7.3 Position Latch .. 91

4.8 HARDWARE BACKLASH COMPENSATOR AND VIBRATION SUPPRESSION.......... 92
4.9 SOFTWARELIMIT FUNCTION.. 93

4.10 INTERRUPTCONTROL .. 94

4.11 IDLING CONTROL... 99

PPCI7443 UTILITY .. 101

5.1 EXECUTEPPCI7443 UTILITY .. 102

5.2 ABOUT PPCI7443 UTILITY .. 102

5.3 PPCI7443 UTILITY FORM INTRODUCING... 103

Table of Contents •••• iii

5.3.1 Main form... 103

5.3.2 Interface I/O Configuration Form.. 103

5.3.3 Pulse IO & Interrupt Configuration Form 104

5.3.4 Operate form:... 105

FUNCTION LIBRARY... 111

6.1 LIST OFFUNCTIONS... 111

6.2 C/C++ PROGRAMMING LIBRARY ... 118

6.3 INITIALIZATION ... 119

6.4 PULSEINPUT/OUTPUTCONFIGURATION... 121

6.5 VELOCITY MODE MOTION... 123

6.6 SINGLE AXIS POSITIONMODE.. 126

6.7 LINEAR INTERPOLATEDMOTION.. 131

6.8 CIRCULAR INTERPOLATIONMOTION.. 137

6.9 HOME RETURNMODE ... 143

6.10 MANUAL PULSERMOTION... 145

6.11 MOTION STATUS ... 148

6.12 MOTION INTERFACEI/O .. 149

6.13 MOTION I/O MONITORING... 151

6.14 INTERRUPTCONTROL .. 152

6.15 POSITIONCONTROL AND COUNTERS.. 158

6.16 POSITIONCOMPARE ANDLATCH.. 161

6.17 CONTINUOUS MOTION.. 167

6.18 MULTIPLE AXESSIMULTANEOUS OPERATION.. 168

6.19 GENERAL-PURPOSEDTTL OUTPUT... 171

CONNECTION EXAMPLE ... 172

7.1 GENERAL DESCRIPTION OFWIRING ... 172

7.2 CONNECTIONEXAMPLE WITH SERVODRIVER .. 173

How to Use This Guide

This manual is designed to help you use the PPCI7443. The manual
describes how to modify various settings on the PPCI7443 card to meet
your requirements. It is divided into six chapters:

Chapter 1 “ Introduction” , gives an overview of the product features,
applications, and specifications.

Chapter 2 “ Installation” , describes how to install the PPCI7443.

Chapter 3 “ Signal Connection” , describes the connectors’ pin
assignment and how to connect the outside signal and
devices with the PPCI7443.

Chapter 4 “ Operation Theorem” , describes detail operations of the
PPCI7443.

Chapter 5 “ PPCI7443 Utility” , describes how to utilize a Microsoft
Windows based utility program to configure and test running
the PPCI7443.

Chapter 6 “ C/C++ Function Library” , describes high-level
programming interface in C/C++ language. It helps
programmer to control PPCI7443 in high level language
style.

Chapter 7 “ Connection Example” shows some typical connection
examples between PPCI7443 and servo driver and stepping
driver.

Introduction •••• 1

1

Introduction

The PPCI7443 is an advanced 4 axes motion controller card with PCI
interface. It can generate high frequency pulses (6.4MHz) to drive
stepping/micro stepping motors and servo motors. In motion functions, it
provides 2-axis circular, 4-axis linear interpolation, continuous interpolation
with velocity continuity. Also, change position/speed on the fly are available
in single axis operation. Multiple PPCI7443 cards can be used in one
system. Incremental encoder interface on all four axes provide the ability to
correct positioning errors generated by inaccurate mechanical
transmissions, and with the help of on board FIFO, PPCI7443 can also
perform precise and extremely fast position compare and trigger function
without consuming CPU resource. In addition, mechanical sensor interface,
servo motor interface and general-purpose I/O signals are provided for
system integration.

Figure 1.1 shows the function block diagram of PPCI7443 card. PPCI7443
uses one ASICs (PCL6045) to perform 4 axes motion control. These ASICs
are made of Nippon Pulse Motor incorporation. The motion control
functions include linear and S-curve acceleration/deceleration, circular
interpolation between two axes, linear interpolation between 2~4 axes,
continuous motion, in positioning and 13 home return modes are done by
the ASIC. Since these functions needing complex computations are done
internally on the ASIC, the PC’s CPU is free to supervise and perform other
tasks.

PPCI7443 Utility, a Microsoft Windows based software is equipped with the
PPCI7443 card for supporting application development. The PPCI7443
Utility is very helpful for debugging a motion control system during the
design phase of a project. The on-screen monitor shows all installed axis
information and I/O signals status of PPCI7443 cards. In addition to
PPCI7443 Utility, both DOS and Windows version function library are

2 • Introduction

included for programmers using C++ and Visual Basic language. Several
sample programs are given to illustrate how to use the function library.

Figure 1.2 is a flowchart that shows a recommending process of using this
manual to develop an application. Please also refer the relative chapters
for the detail of each step.

Figure 1.1 Block Diagram of PPCI7443

PCI Bus

PCI Bus
Controller

FPGAFIFO

PCL6045

Pulser
(CN3)

STA/STP
(CN4)

TTL Dout
(CN5)

Pulse I/O
Mechanical

Interface
Servo Driver

Interface
Latch
Input

Compare
Output

Isolation

OUT
DIR

EA,EB,EZ

+EL,-EL
SD

ORG

INP,ALM
ERC

SVON
RDY

CMP1
CMP2

LTC3
LTC4

DC/DC

Ext +24V

+5VExt +5V

CN2

CN1

Introduction •••• 3

Figure 1.2 Flowchart of building an application

Hardware Instllation
Jumper Setting

Wiring

Run PPCI7443 Utility
To Configure System

Run PPCI7443 Utility
To Verify Operation

Use Function Library
To develop Applications

System is OK?

END

Chapter 2 & 3

Chapter 5

Chapter 4 & 5

Chapter 4 & 6

No

Yes

4 • Introduction

1.1 Features

The following lists summarize the main features of the PPCI7443 motion
control system.

� 32-bit PCI-Bus plug and play.
� 4 axes of step and direction pulse output for controlling stepping or

servomotor.
� Maximum output frequency of 6.55 Mpps.
� Pulse output options: OUT/DIR, CW/CCW
� Programmable acceleration and deceleration time
� Trapezoidal and S-curve velocity profiles for all modes.
� Any 2 of 4 axes circular interpolation.
� Any 2~4 of 4 axes linear interpolation.
� Continuous interpolation for contour following motion.
� Change position and speed on the Fly.
� Change speed by compare condition.
� 13 home return modes with searching.
� Hardware backlash compensator and vibration suppression
� 2 Software end-limits for each axes to save I/O switches.
� 28-bit up/down counter for incremental encoder feedback.
� Home switch, index signal(EZ), positive and negative limit switches

interface provided for all axes.
� 2 axes high speed position latch input
� 2 axes position compare trigger output with 4K FIFO auto-loading.
� All digital input and output signals are 2500Vrms isolated
� Programmable interrupt sources.
� Simultaneous start/stop motion on multiple axes.
� Manual pulser input interface.
� Software supports maximum up to 12 PPCI7443 cards (48 axes)

operation in one system.
� Compact, half size PCB.
� PPCI7443 Utility, Microsoft Windows based application development

software.
� PPCI7443 Library and Utility for DOS library and Windows

95/98/NT/2000/XP DLL.

Introduction •••• 5

1.2 Specifications

� Applicable Motors:
� Stepping motors with pulse train input stepping drivers.
� AC or DC servomotors with pulse train input servo drivers.

� Performance:
� Number of controllable axes: 4 axes.
� Maximum pulse output frequency: 6.55Mpps, linear, trapezoidal or S-

curve velocity profile drive.
� Internal reference clock: 19.66 MHz
� Position pulse setting range: -134,217,728~ +134,217,728 pulses

(28-bit).
� Up / down counter counting range: 0~268,435,455 (28-bit.) or –

134,217,728 to +134,217,727
� Pulse rate setting range (Pulse Ratio = 1: 65535):

0.1 PPS to 6553.5 PPS. (Multiplier = 0.1)
1 PPS to 65535 PPS. (Multiplier = 1)
100 PPS to 6553500 PPS. (Multiplier = 100)

� I/O Signales:
� Input/Output Signals for each axis
� All I/O signal are optically isolated with 2500Vrms isolation voltage
� Command pulse output pins: OUT and DIR.
� Incremental encoder signals input pins: EA and EB.
� Encoder index signal input pin: EZ.

� Mechanical limit/switch signal input pins: ±EL, SD/PCS and ORG.
� Servomotor interface I/O pins: INP, ALM and ERC.
� Position latch input pin: LTC
� Position compare output pin: CMP
� General-purpose digital output pin: SVON.
� General-purpose digital input pin: RDY.
� Pulser signal input pin: PA and PB.
� Simultaneous Start/Stop signal I/O pins: STA and STP.

� General-Purposed Output
� 6 TTL level Digital Output

6 • Introduction

� General Specifications
� Connectors: 100-pin SCSI-type connector

� Operating Temperature: 0° C ~ 50° C
� Storage Temperature: -20° C ~ 80° C
� Humidity: 5 ~ 85%, non-condensing
� Power Consumption:

� Slot power supply(input): +5V DC ±5%, 900mA max.
� External power supply(input): +24V DC ±5%, 500mA max.
� External power supply(output): +5V DC ±5%, 500mA, max.

� Dimension: 185mm(L) X 98.4mm(H)

1.3 Software Supporting

1.3.1 Programming Library

For the customers who are writing their own programs, we provide MS-DOS
Borland C/C++ (Version: 3.1) programming library and Windows-
95/98/NT/2000/XP DLL for PPCI7443. These function libraries are shipped
with the board.

1.3.2 PPCI7443 Utility

A Windows-based Utility for users to setup cards, motors and system. It can
help users to debug their hardware and software. It also can let users to
setting the I/O logic parameters which can be loaded in their own program.
This product is bundled with this card.

Refer to Chapter 5 for details.

Installation • 7

2

Installation

This chapter describes how to install the PPCI7443. Please follow these
steps below to install the PPCI7443.

� Check what you have (section 2.1)
� Check the PCB (section 2.2)
� Install the hardware (section 2.3)
� Install the software driver (section 2.4)
� Understanding the I/O signal connections (chapter 3) and their

operation (chapter 4)
� Understanding the connectors’ pin assignments (the rest of the

sections) and wiring the connections

2.1 What You Have

In addition to this User’s Guide, the package includes the following items:

� PPCI7443: advanced 4 Axes Servo / Stepper Motion Control Card
� Install CD-ROM
� +24V power input cable (for CN1) accessory.
� Input/output signal cable(for CN2) accessory.
� Manual pulser input cable(for CN3) accessory.
� simultaneously start/stop signals for multiple axes cable(for CN4)

accessory.
� general-purposed TTL output signals cable(for CN5) accessory.

If any of these items are missing or damaged, contact the dealer from
whom you purchased the product. Save the shipping materials and carton
in case you want to ship or store the product in the future.

8 • Installation

2.2 PPCI7443 Outline Drawing

Figure 2.1 PCB Layout of the PPCI7443

Figure 2.1 PCB Layout of the PPCI7443

CN1: External Power Input Connector
CN2: Input / Output Signal Connector
CN3: Manual Pulser Signal Connector
CN4: Simultaneous Start / Stop Connector
CN5: TTL Output Connector
S1 : End limit switch logic selection switch
J1~J8 : Pulse output type selection jumper

CN1

CN2

J1 J4

J5 J8

PCL6045

CN3 CN4

C
N

5S1

185mm

98
.4

m
m

Installation • 9

2.3 Hardware Installation

2.3.1 Hardware configuration

PPCI7443 has plug and play PCI controller on board. The memory usage
(I/O port locations) of the PCI card is assigned by system BIOS. The
address assignment is done on a board-by-board basis for all PCI cards in
the system.

2.3.2 PCI slot selection

Your computer will probably have both PCI and ISA slots. Do not force the
PCI card into a PC/AT slot. The PPCI7443 can be used in any PCI slot.

2.3.3 Installation Procedures

1. Read through this manual, and setup the jumper according to your
application

2. Turn off your computer, Turn off all accessories (printer, modem, monitor,
etc.) connected to computer.

Remove the cover from your computer.

3. Select a 32-bit PCI expansion slot. PCI slots are shorter than ISA or EISA
slots and are usually white or ivory.

4. Before handling the PPCI7443, discharge any static buildup on your body
by touching the metal case of the computer. Hold the edge and do not
touch the components.

5. Position the board into the PCI slot you selected.

6. Secure the card in place at the rear panel of the system unit using screw
removed from the slot.

2.3.4 Trouble shooting:

If your system won’t boot or if you experience erratic operation with your
PCI board in place, it’s likely caused by an interrupt conflict (perhaps
because you incorrectly described the ISA setup). In general, the solution,
once you determine it is not a simple oversight, is to consult the BIOS
documentation that come with your system.

10 • Installation

2.4 Software Driver Installation

Step 1: Run setup from install CD

Step 2: Follow the procedures of installer.

Step 3: After setup completion, restart windows.

2.5 CN1 Pin Assignments: External Power Input

CN1 Pin No Name Description
1 EXGND Grounds of the external power.
2 EX+24V External power supply of +24V DC ± 5%

Notes:

1. CN1 is a plug-in terminal board with no screw.

2. Be sure to use the external power supply. The +24V DC is used by
external input/output signal circuit. The power circuit is configured as
follows.

3. Wires for connection to CN1

Solid wire: ϕ 0.32mm to ϕ 0.65mm (AWG28 to AWG22)
Twisted wire:0.08mm2 to 0.32mm2 (AWG28 to AWG22)
Naked wire length:10mm standard

The following diagram shows the external power supply system of the
PPCI7443. The external +24V power must be provided, an on-board
regulator generates +5V for both internal and external usage.

Note: Please don’t use the +5V power source to drive too many
devices, especially stepping drivers or external encoders. The driving
capacity would be not enough.

DC/DC

E
xt

er
na

al
P

ow
er

S
up

pl
y

Isolation

(Bus Power)

+5V
GND

I/O SIGNALS

(External Power)

EX+24V

EXGND

EX+5V

I/O
SIGNALS

(OUTPUT)

In
te

rn
al

P
ow

er
S

up
pl

y
fr

om
P

C
IB

U
S

Installation • 11

2.6 CN2 Pin Assignments: Main connector

The CN2 is the major connector for the motion control I/O signals.
No. Name I/O Function(axis�/�) No. Name I/O Function(axis�/�)
1 VPP O +5V power supply output 51 VPP O +5V power supply output
2 GND Ext. power ground 52 GND Ext. power ground
3 OUT1+ O Pulse signal (+),� 53 OUT3+ O Pulse signal (+), �
4 OUT1- O Pulse signal (-),� 54 OUT3- O Pulse signal (-),�
5 DIR1+ O Dir. signal (+),� 55 DIR3+ O Dir. signal (+), �
6 DIR1- O Dir. signal (-),� 56 DIR3- O Dir. signal (-), �
7 SVON1 O Multi-purpose signal, � 57 SVON3 O Multi-purpose signal, �
8 ERC1 O Dev. ctr, clr. signal, � 58 ERC3 O Dev. ctr, clr. signal, �
9 ALM1 I Alarm signal, � 59 ALM3 I Alarm signal, �
10 INP1 I In-position signal, � 60 INP3 I In-position signal, �
11 RDY1 I Multi-purpose signal, � 61 RDY3 I Multi-purpose signal, �
12 GND Ext. power ground 62 EXGND Ext. power ground
13 EA1+ I Encoder A-phase (+), � 63 EA3+ I Encoder A-phase (+), �
14 EA1- I Encoder A-phase (-), � 64 EA3- I Encoder A-phase (-),�
15 EB1+ I Encoder B-phase (+), � 65 EB3+ I Encoder B-phase (+),�
16 EB1- I Encoder B-phase (-), � 66 EB3- I Encoder B-phase (-),�
17 EZ1+ I Encoder Z-phase (+), � 67 EZ3+ I Encoder Z-phase (+),�
18 EZ1- I Encoder Z-phase (-), � 68 EZ3- I Encoder Z-phase (-),�
19 VPP O +5V power supply output 69 VPP O +5V power supply output
20 GND Ext. power ground 70 GND Ext. power ground
21 OUT2+ O Pulse signal (+), � 71 OUT4+ O Pulse signal (+),�
22 OUT2- O Pulse signal (-), � 72 OUT4- O Pulse signal (-),�
23 DIR2+ O Dir. signal (+), � 73 DIR4+ O Dir. signal (+),�
24 DIR2- O Dir. signal (-), � 74 DIR4- O Dir. signal (-),�
25 SVON2 O Multi-purpose signal, � 75 SVON4 O Multi-purpose signal, �
26 ERC2 O Dev. ctr, clr. signal, � 76 ERC4 O Dev. ctr, clr. signal, �
27 ALM2 I Alarm signal, � 77 ALM4 I Alarm signal, �
28 INP2 I In-position signal, � 78 INP4 I In-position signal, �
29 RDY2 I Multi-purpose signal, � 79 RDY4 I Multi-purpose signal, �
30 GND Ext. power ground 80 GND Ext. power ground
31 EA2+ I Encoder A-phase (+), � 81 EA4+ I Encoder A-phase (+), �
32 EA2- I Encoder A-phase (-), � 82 EA4- I Encoder A-phase (-), �
33 EB2+ I Encoder B-phase (+), � 83 EB4+ I Encoder B-phase (+), �
34 EB2- I Encoder B-phase (-), � 84 EB4- I Encoder B-phase (-), �
35 EZ2+ I Encoder Z-phase (+), � 85 EZ4+ I Encoder Z-phase (+), �
36 EZ2- I Encoder Z-phase (-), � 86 EZ4- I Encoder Z-phase (-), �
37 PEL1 I End limit signal (+), � 87 PEL3 I End limit signal (+), �
38 MEL1 I End limit signal (-), � 88 MEL3 I End limit signal (-), �
39 CMP1 O Position compare output � 89 LTC3 I Position latch input �
40 SD/PCS1 I Ramp-down signal � 90 SD/PCS3 I Ramp-down signal �
41 ORG1 I Origin signal, � 91 ORG3 I Origin signal, �
42 GND Ext. power ground 92 GND Ext. power ground
43 PEL2 I End limit signal (+), � 93 PEL4 I End limit signal (+), �
44 MEL2 I End limit signal (-), � 94 MEL4 I End limit signal (-), �
45 CMP2 O Position compare output � 95 LTC4 I Position latch input, �
46 SD/PCS2 I Ramp-down signal � 96 SD/PCS4 I Ramp-down signal �
47 ORG2 I Origin signal, � 97 ORG4 I Origin signal, �
48 GND Ext. power ground 98 GND Ext. power ground
49 GND Ext. power ground 99 E_24V 0 Ext. power supply, +24V
50 GND Ext. power ground 100 E_24V 0 Ext. power supply, +24V

12 • Installation

2.7 CN3 Pin Assignments: Manual Pulser Input

The signals on CN3 are for manual pulser input.

No. Name Function(Axis)
1 GND Bus power ground
2 PB4 Pulser B-phase signal input, �
3 PA4 Pulser A-phase signal input, �
4 PB3 Pulser B-phase signal input, �
5 PA3 Pulser A-phase signal input, �
6 +5V Bus power, +5V
7 GND Bus power ground
8 PB2 Pulser B-phase signal input, �
9 PA2 Pulser A-phase signal input, �

10 PB1 Pulser B-phase signal input, �
11 PA1 Pulser A-phase signal input, �
12 +5V Bus power, +5V

Note: +5V and GND pins are directly given by the PCI-Bus power.
Therefore, these signals are not isolated.

2.8 CN4 Pin Assignments: Simultaneous

Start/Stop

The signals on CN3 are for simultaneously start/stop signals for multiple
axes and multiple cards.

No. Name Function(Axis)
1 GND Bus power ground
2 STP Simultaneous stop signal input/output
3 STA Simultaneous start signal input/output
4 STP Simultaneous stop signal input/output
5 STA Simultaneous start signal input/output
6 +5V Bus power, +5V

Note: +5V and GND pins are directly given by the PCI Bus power.

Installation • 13

2.9 CN5 Pin Assignment : TTL Output

The signals on CN5 are for general-purposed TTL output signals.

2.10 Jumper Setting for Pulse Output

The J1~J8 is used to set the signal type of the pulse output signals (DIR
and OUT). The output signal type could be differential line driver output or
open collector output. Please refer to section 3.1 for details of the jumper
setting. The default setting is the differential line driver mode.

Line Driver
Open Collector

Line Driver
Open Collector

Pin No. Name Function

1 DGND Digital ground
2 DGND Digital ground

3 ED0 Digital Output 0

4 ED1 Digital Output 1

5 ED2 Digital Output 2

6 ED3 Digital Output 3

7 ED4 Digital Output 4

8 ED5 Digital Output 5

9 VCC VCC +5V

10 N.C. No use

1
2
3

J5 J6 J7 J8

J1 J2 J3 J4

1
2
3

14 • Installation

2.11 Switch Setting for EL Logic

The switch S1 is used to set the EL limit switch’s type. The default setting
of EL switch type is “ normal open” type limit switch (or "A" contact type).
The switch on is to use the “normal closed” type limit switch (or “B” contact
type). The default setting is set as normal open type.” "

For safety reason, users must set a type which will make the end-limit
active when it is broken or dis-connected.

Placement of S1 Switch on Board

Axis
4321

OFF

ON

S1

Select "B" Contact EL Switch (Normal Open)

Select "A" Contact EL Switch (Normal Close)

Single Connections • 15

3

Signal Connections

The signal connections of all the I/O signals are described in this chapter.
Please refer the contents of this chapter before wiring the cable between
the PPCI7443 and the motor drivers.

This chapter contains the following sections:

Section 3.1 Pulse output signals OUT and DIR
Section 3.2 Encoder feedback signals EA, EB and EZ
Section 3.3 Origin signal ORG
Section 3.4 End-Limit signals PEL and MEL
Section 3.5 Ramping-down & PCS
Section 3.6 In-position signal INP
Section 3.7 Alarm signal ALM
Section 3.8 Deviation counter clear signal ERC
Section 3.9 General-purpose signal SVON
Section 3.10 General-purpose signal RDY
Section 3.11 Position compare output pin: CMP
Section 3.12 Position latch input pin: LTC
Section 3.13 Pulser input signals PA and PB
Section 3.14 Simultaneous start/stop signals STA and STP
Section 3.15 General-purposed TTL Output

16 • Single Connections

3.1 Pulse Output Signals OUT and DIR

There are 4 axes pulse output signals on PPCI7443. For every axis, two
pairs of OUT and DIR signals are used to send the pulse train and to
indicate the direction. The OUT and DIR signals can also be programmed
as CW and CCW signals pair, refer to section 4.1.1 for details of the logical
characteristics of the OUT and DIR signals. In this section, the electronic
characteristics of the OUT and DIR signals are shown. Each signal
consists of a pair of differential signals. For example, the OUT2 is
consisted of OUT2+ and OUT2- signals. The following table shows all the
pulse output signals on CN2.

CN2 Pin No. Signal Name Description Axis #
3 OUT1+ Pulse signals (+) �

4 OUT1- Pulse signals (-) �

5 DIR1+ Direction signal(+) �

6 DIR1- Direction signal(-) �

21 OUT2+ Pulse signals (+) �

22 OUT2- Pulse signals (-) �

23 DIR2+ Direction signal(+) �

24 DIR2- Direction signal(-) �

53 OUT3+ Pulse signals (+) �

54 OUT3- Pulse signals (-) �

55 DIR3+ Direction signal(+) �

56 DIR3- Direction signal(-) �

71 OUT4+ Pulse signals (+) �

72 OUT4- Pulse signals (-) �

73 DIR4+ Direction signal(+) �

74 DIR4- Direction signal(-) �

The output of the OUT or DIR signals can be configured by jumpers as
either the differential line driver or open collector output. You can select the
output mode either by closing breaks between 1 and 2 or 2 and 3 of
jumpers J1~J8 as follows.

Single Connections • 17

Output
Signal

For differential line driver
output, close a break
between 1 and 2 of

For open collector
output, close a break
between 2 and 3 of:

OUT1- J1 J1
DIR1- J2 J2
OUT2- J3 J3
DIR2- J4 J4
OUT3- J5 J5
DIR3- J6 J6
OUT4- J7 J7
DIR4- J8 J8

The default setting of OUT and DIR signals are the as differential line driver
mode.

The following wiring diagram is for the OUT and DIR signals of the 4 axes.

OUT+ , DIR+

EXGND
from PCL6045

R

VCC

OUT
DIR

EX+5V

3

2

1

J1-J8

OUT- , DIR-

2631

CN2

Inside PPCI7443

NOTE: If the pulse output is set to the open collector output mode, the
OUT- and DIR- are used to send out signals. Please take care that the
current sink to OUT- and DIR- pins must not exceed 20mA. The current
may provide by the EX+5V power source, however, please note that the
maximum capacity of EX+5V power is 500mA.

18 • Single Connections

3.2 Encoder Feedback Signals EA, EB and EZ

The encoder feedback signals include the EA, EB, and EZ. Every axis has
six pins for three differential pairs of phase-A (EA), phase-B (EB) and index
(EZ) input. The EA and EB are used for position counting, the EZ is used
for zero position index. The relative signal names, pin numbers and the
axis number are shown in the following tables.

CN2 Pin No Signal Name Axis # CN2 Pin No Signal Name Axis #
13 EA1+ � 63 EA3+ �

14 EA1- � 64 EA3- �

15 EB1+ � 65 EB3+ �

16 EB1- � 66 EB3- �

31 EA2+ � 81 EA4+ �

32 EA2- � 82 EA4- �

33 EB2+ � 83 EB4+ �

34 EB2- � 84 EB4- �

CN2 Pin No Signal Name Axis # CN2 Pin No Signal Name Axis #
17 EZ1+ � 67 EZ3+ �

18 EZ1- � 68 EZ3- �

35 EZ2+ � 85 EZ4+ �

36 EZ2- � 86 EZ4- �

The input circuits of the EA, EB, and EZ signals are shown as follows.

EA+ , EB+ , EZ+
PCL6045

R
CN2

Inside PPCI7443

EA- , EB- , EZ-
EA , EB , EZ

Please note that the voltage across every differential pair of encoder input
signals (EA+, EA-), (EB+, EB-) and (EZ+, EZ-) should be at least 3.5V or
higher. Therefore, you have to take care of the driving capability when
connecting with the encoder feedback or motor driver feedback. The
differential signal pairs will be converted to digital signal EA, EB and EZ to
connect to PCL6045 ASIC.

Here are two examples of connecting the input signals with the external
circuits. The input circuits can connect to the encoder or motor driver,

Single Connections • 19

which are equipped with: (1) differential line driver or (2) open collector
output.

20 • Single Connections

� Connection to Line Driver Output

To drive the PPCI7443 encoder input, the driver output must provide at
least 3.5V across the differential pairs with at least 6 mA driving capability.
The ground level of the two sides must be tight together too.

A,B phase signals
Index signal

EXGND GND

EA- , EB- , EZ-
EA+ , EB+ , EZ+

PPCI7443
External Encoder/Driver
With line driver output

� Connection to Open Collector Output

To connect with open collector output, an external power supply is
necessary. Some motor drivers also provide the power source. The
connection between PPCI7443, encoder, and the power supply is shown in
the following diagram. Please note that the external current limit resistor R
is necessary to protect the PPCI7443 input circuit. The following table lists
the suggested resistor value according to the encoder power supply.

Encoder Power(VDD) External Resistor R
+5V 0 Ω (None)
+12V 1.8kΩ
+24V 4.3kΩ

If=6mA max.

A,B phase signal
Index signal

EA- , EB- , EZ-
EA+ , EB+ , EZ+

PPCI7443

Motor Encoder/Driver
With Open Collector Output

VDD
GND

External Power
for Encoder

R

For more detail operation of the encoder feedback signals, please refer to
section 4.4.

Single Connections • 21

3.3 Origin Signal ORG

The origin signals (ORG1~ORG4) are used as input signals for origin of the
mechanism. The following table lists the relative signal name, pin number,
and the axis number.

CN2 Pin No Signal Name Axis #
41 ORG1 �

47 ORG2 �

91 ORG3 �

97 ORG4 �

The input circuits of the ORG signals are shown as following. Usually, a
limit switch is used to indicate the origin of one axis. The specifications of
the limit switches should with contact capacity of +24V, 6mA minimum. An
internal filter circuit is used to filter out the high frequency spike, which may
cause wrong operation.

To PCL6045

4.7k CN2

Inside PPCI7443

Filter
Circuit

EX+24V

If = 6mA Max.
ORG
SwichEXGND

When the motion controller is operated at the home return mode, the ORG
signal is used to stop the control output signals (OUT and DIR). For the
detail operation of the ORG, please refer to section 4.3.3.

22 • Single Connections

3.4 End-Limit Signals PEL and MEL

There are two end-limit signals PEL and MEL for one axis. PEL indicates
end limit signal in plus direction and MEL indicates end limit signal in minus
direction. The relative signal name, pin number and axis number are shown
in the following table.

CN2 Pin No Signal Name Axis # CN2 Pin No Signal Name Axis #
37 PEL1 � 87 PEL3 �

38 MEL1 � 88 MEL3 �

43 PEL2 � 93 PEL4 �

44 MEL2 � 94 MEL4 �

The signals connection and relative circuit diagram is shown in the following
diagram. The external limit switches featuring a contact capacity of +24V,
6mA minimum. You can use either ‘A-type’ (normal open) contact switch or
‘B-type’ (normal closed) contact switch by setting the DIP switch S1. The
PPCI7443 is delivered with all bits of S1 set to ON, refer to section 2.10.
For the details of the EL operation, please refer to section 4.3.2.

To PCL6045

4.7k CN2

Inside PPCI7443

Filter
Circuit

EX+24V

If = 6mA Max.
PEL,MEL
SwichEXGND

Single Connections • 23

3.5 Ramping-down & PCS

There is a SD/PCS signal, for every of the 4 axis. The relative signal name,
pin number and axis number are shown in the following table.

CN2 Pin No Signal Name Axis #
40 SD1/PCS1 �

46 SD2/PCS2 �

90 SD3/PCS3 �

96 SD4/PCS4 �

The signals connection and relative circuit diagram is shown in the following
diagram. Usually, limit switches are used to generate the slow-down signals
to make motor operating in a slower speed. For more details of the SD/PCS
operation, please refer to section 4.3.1.

To PCL6045

4.7k CN2

Inside PPCI7443

Filter
Circuit

EX+24V

If = 6mA Max.
SD

SwichEXGND

24 • Single Connections

3.6 In-position Signal INP

The in-position signals INP from the servo motor driver indicate the
deviation error is zero. That is the servo position error is zero. The relative
signal name, pin number and axis number are shown in the following table.

CN2 Pin No Signal Name Axis #
10 INP1 �

28 INP2 �

60 INP3 �

78 INP4 �

The input circuit of the INP signals is shown in the following diagram.

To PCL6045

R

CN2

Inside PPCI7443 EX+5V

If = 12mA Max.
If = 5mA Min.

INP

The in-position signals are usually from servomotor drivers, which usually
provide open collector output signals. The external circuit must provide at
least 5 mA current sink capability to drive the INP signal active. For more
details of the INP signal operating, please refer to section 4.2.1.

Single Connections • 25

3.7 Alarm Signal ALM

The alarm signal ALM is used to indicate the alarm status from the servo
driver. The relative signal name, pin number and axis number are shown in
the following table.

CN2 Pin No Signal Name Axis #
9 ALM1 �

27 ALM2 �

59 ALM3 �

77 ALM4 �

The input circuit of alarm circuit is shown in the following diagram. The ALM
signals are usually from servomotor drivers, which usually provide open
collector output signals. The external circuit must provide at least 5 mA
current sink capability to drive the ALM signal active. For more details of
the ALM operation, please refer to section 4.2.2.

To PCL6045

R

CN2

Inside PPCI7443 EX+5V

If = 12mA Max.
If = 5mA Min.

ALM

26 • Single Connections

3.8 Deviation Counter Clear Signal ERC

The deviation counter clear signal (ERC) is active in the following 4
situations:

1. home return is complete;
2. the end-limit switch is active;
3. an alarm signal stops OUT and DIR signals;
4. an emergency stop command is issued by software (operator).

The relative signal name, pin number and axis number are shown in the
following table.

CN2 Pin No Signal Name Axis #
8 ERC1 �

26 ERC2 �

58 ERC3 �

76 ERC4 �

The ERC signal is used to clear the deviation counter of servomotor driver.
The ERC output circuit is in the open collector with maximum 35 V external
power at 50mA driving capability. For more details of the ERC operation,
please refer to section 4.2.3.

from PCL6045

CN2Inside PPCI7443

35V 50mA Max.

EXGND

ERC

Single Connections • 27

3.9 General-purpose Signal SVON

The SVON signals can be used as servomotor-on control or general-
purpose output signals. The relative signal name, pin number and axis
number are shown in the following table.

CN2 Pin No Signal Name Axis #
7 SVON1 �

25 SVON2 �

57 SVON3 �

75 SVON4 �

The output circuit of SVON signal is shown in the following diagram.

from PCL6045

CN2Inside PPCI7443

35V 50mA Max.

EXGND

SVON

28 • Single Connections

3.10 General-purpose Signal RDY

The RDY signals can be used as motor driver ready input or general-
purpose input signals. The relative signal name, pin number and axis
number are shown in the following table.

CN2 Pin No Signal Name Axis #
11 RDY1 �

29 RDY2 �

61 RDY3 �

79 RDY4 �

The input circuit of RDY signal is shown in the following diagram

To PCL6045

R

CN2

Inside PPCI7443 EX+5V

If = 12mA Max.
If = 5mA Min.

RDY

Single Connections • 29

3.11 Position compare output pin: CMP

The PPCI7443 provides 2 compare output channels, CMP, and they are for
the first 2 axes, � & �, only. The compare output will generate a pulse
signal when encoder counter reached the value pre-set by user.

The CMP channel is in CN2. The relative signal name, pin number and axis
number are shown in the following table.

CN2 Pin No Signal Name Axis #
39 CMP1 �

45 CMP2 �

The following wiring diagram is for the CMP of the first 2 axes.

R2
CN2

Inside PPCI7443

CMP1 , CMP2

VCC

From PLD

GND

VPP

R1

Note: CMP trigger type can be set as normal low (rising edge) type or
normal high (falling edge) type. Default setting is normal high. Please
refer to function _7443_set_trigger_type() in section 6.16 for details.

This CMP pin can be regarded as a TTL output.

In the above figure:
VPP: Isolated +5V
VCC: Computer +5V
R1: 470 Ohms
R2: 1K Ohms

30 • Single Connections

3.12 Position latch input pin: LTC

The PPCI7443 provides 2 position latch input channels, LTC, and they are
for the last 2 axes, � & �, only. The LTC signal will trigger the counter-
value-capturing functions, which gives a precise position determination.

The LTC channel is in CN2. The relative signal name, pin number and axis
number are shown in the following table.

CN2 Pin No Signal Name Axis #
89 LTC3 �

95 LTC4 �

The following wiring diagram is for the LTC of the last 2 axes.

R
CN2

Inside PPCI7443

To PCL6045
LTC3 , LTC4

GND

VPP

R

GND

Single Connections • 31

3.13 Pulser Input Signals PA and PB

The PPCI7443 can accept the input signals from pulser signals through the
following pins of connector CN3. The pulser’s behavior is as an encoder.
The signals are usually used as generate the position information which
guide the motor to follow.

CN3
Pin No

Signal
Name Axis # CN3

Pin No
Signal
Name Axis #

2 PA1 � 8 PA3 �

3 PB1 � 9 PB3 �

4 PA2 � 10 PA4 �

5 PB2 � 11 PB4 �

PA and PB pins of connector CN3 are directly connected to PA and PB pins
of PCL6045. The interface circuits are shown as follows.

VCC

GND

PA , PBPA , PB
PCL6045

If the signal voltage of pulser is not +5V or if the pulser is distantly placed, it
is recommended to put a photo coupler or line driver in between. Also, +5V
and GND power lines of CN3 are direct from the PCI bus. Please carefully
use these signals because they are not isolated.

32 • Single Connections

3.14 Simultaneously Start/Stop Signals STA and

STP

The PPCI7443 provides the STA and STP signals, which enable
simultaneous start/stop of motions on multiple axes. The STA and STP
signals are on the CN4.

The following diagram shows the on-board circuits. The STA and STP
signals of the four axes are tight together respectively.

4.7k 4.7k

2, 4 STP

STA

CN4

Inside PPCI7443

STP

STA

PCL6045

VCC VCC

3, 5

The STP and STA signals are both input and output signal. To operate the
simultaneously start and stop action, both software control and external
control are possible. By the software control, the signals can be generated
from any one of the PCL6045, and other chip will start and stop
simultaneously if proper programmed. You can also use an external open
collector or switch to drive the STA/STP signals for simultaneous start/stop.

If there are two or more PPCI7443 cards, cascade CN4 connectors of all
cards for simultaneous start/stop control on all concerned axes is possible.
In this case, connect CN4 as follows.

STP
STA
STP
STA

STP
STA
STP
STA

STP
STA
STP
STA

CN4 CN4 CN4

PPCI7443 #1 PPCI7443 #3PPCI7443 #2

To let an external signal to initiate simultaneous start/stop, connect the
7406 (open collector) or the equivalent circuit as follows.

Single Connections • 33

STP
STA
STP
STA

STP
STA
STP
STA

STP
STA
STP
STA

CN4 CN4 CN4

PPCI7443 #1 PPCI7443 #3PPCI7443 #2

7406

7406

STOP

START

3.15 General-purposed TTL Output

The PPCI7443 provides 6 general-purposed TTL digital output. The TTL
output is in CN5. The relative signal name, pin number and axis number
are shown in the following table.

The General-purposed TTL Output signals is shown in the following
diagram.

Pin No. Name Function
1 DGND Digital ground
2 DGND Digital ground
3 ED0 Digital Output 0
4 ED1 Digital Output 1
5 ED2 Digital Output 2
6 ED3 Digital Output 3
7 ED4 Digital Output 4
8 ED5 Digital Output 5
9 VCC VCC +5V

Inside PPCI7443

DGND

74LS373

ED0 ~ ED5

34 • Single Connections

Operation Theorem • 35

4

Operation Theorem

This chapter describes the detail operation of the PPCI7443 card. Contents
of the following sections are as following.

Section 4.1: The motion control modes
Section 4.2: The motor driver interface (INP, ERC, ALM, SVON, RDY)
Section 4.3: The limit switch interface and I/O status (SD/PCS, EL, ORG)
Section 4.4: The counters (EA, EB, EZ)
Section 4.5: Multiple PPCI7443 cards operation.
Section 4.6: Change Position or Speed on the Fly
Section 4.7: Position compare and Latch
Section 4.8: Hardware backlash compensator
Section 4.9: Software limit function
Section 4.10: Interrupt Control
Section 4.11: Idling control

4.1 Motion Control Modes

In this section, the pulse output signals’ configurations, and the following
motion control modes are described.

� 4.1.1 Pulse Command Output
� 4.1.2 Velocity mode motion for one axis
� 4.1.3 Trapezoidal motion for one axis
� 4.1.4 S-curve profile motion for one axis
� 4.1.5 Linear interpolation for 2~4 axes
� 4.1.6 Circular interpolation for 2 axes
� 4.1.7 Circular interpolation with Acc/Dec time
� 4.1.8 The Relationship between Velocity and Acceleration Time
� 4.1.9 Continuous motion

36 • Operation Theorem

� 4.1.10 Home return mode for one axis
� 4.1.11 Manual pulser mode for one axis
� 4.1.12 Timer Mode
� 4.1.13 Pulser Interpolation

4.1.1 Pulse Command Output

The PPCI7443 uses pulse command to control the servo / stepper motors
via the drivers. The pulse command consists of two signals: OUT and DIR.
There are two command types: (1) single pulse output mode (OUT/DIR);
and (2) dual pulse output mode (CW/CCW type pulse output). The software
function: _7443_set_pls_outmode() is used to program the pulse
command type. The modes vs. signal type of OUT and DIR pins are as
following table:

Mode Output of OUT pin Output of DIR pin
Dual pulse output

(CW/CCW)
Pulse signal in plus
(or CW) direction

Pulse signal in minus
(or CCW) direction

Single pulse output
(OUT/DIR) Pulse signal Direction signal (level)

The interface characteristics of these signals could be differential line driver
or open collector output. Please refer to section 3.1 for the jumper setting
of signal types.

Single Pulse Output Mode(OUT/DIR Mode)

In this mode, the OUT signal is for the command pulse (position or velocity)
chain. The numbers of OUT pulse represent the relative “distance” or
“position”, the frequency of the OUT pulse represents the command for
“speed” or “velocity”. The DIR signal represents direction command of the
positive (+) or negative (-). This mode is the most common used mode.
The following diagrams show the output waveform. It is possible to set the
polarity of pulse chain.

Operation Theorem • 37

pls_outmode = 0:

pls_outmode = 1:

pls_outmode = 2:

pls_outmode = 3:

Dual Pulse Output Mode(CW/CCW Mode)
In this mode, the waveform of the OUT and DIR pins represent CW
(clockwise) and CCW (counter clockwise) pulse output respectively.
Pulses output from CW pin makes motor move in positive direction,
whereas pulse output from CCW pin makes motor move in negative
direction. The following diagram shows the output waveform of positive
(plus,+) command and negative (minus,-) command.

OUT

DIR (+) (-)

OUT

DIR (+) (-)

OUT

DIR (+) (-)

OUT

DIR (+) (-)

38 • Operation Theorem

pls_outmode = 4:

pls_outmode = 5:

Relative Function:
_7443_set_pls_optmode(): Refer to section 6.4

(CW)

OUT
DIR

Negative direction

OUT

DIR

Positive direction

OUT
DIR

Negative direction

OUT

DIR

Positive direction

(CCW)

(CW)

(CCW)

(CW)

(CCW)

(CW)

(CCW)

Operation Theorem • 39

4.1.2 Velocity mode motion

This mode is used to operate one axis motor at Velocity mode motion. The
output pulse accelerates from a starting velocity (StrVel) to the specified
constant velocity (MaxVel). The _7443_tv_move() function is used to
accelerate constantly while the , _7443_sv_move() function is to accelerate
according to S-curve (constant jerk). The pulse output rate will keep at
maximum velocity until another velocity command is set or stop command is
issued. The _7443_v_change() is used to change speed during moving.
Before this function is applied, be sure to call _7443_fix_speed_range() .
Please refer to section 4.6 for more detail explanation. The
_7443_sd_stop() is used to decelerate the motion to stop. The
_7443_emg_stop() function is used to immediately stop the motion. Those
change or stop functions follow the same velocity profile as its original
move functions, tv_move or sv_move. The velocity profile is shown as
following.

Note: The v_change and stop functions can also be applied to Preset
Mode (both trapezoidal, refer to 4.1.3 and S-curve Motion, refer to 4.1.4) or
Home Mode (refer to 4.1.10).

Relative Functions:
_7443_tv_move(),_7443_sv_move(),_7443_v_change(),_7443_sd_stop(),
_7443_emg_stop(),_7443 _fix_speed_range(),_7443 _unfix_speed_range()
: Refer to section 6.5

40 • Operation Theorem

4.1.3 Trapezoidal Motion Profile

This mode is used to move one axis motor to a specified position (or
distance) with a trapezoidal velocity profile. Single axis is controlled from
point to point. An absolute or relative motion can be performed. In absolute
mode, the target position is assigned. In relative mode, the target
displacement is assigned. In both absolute and relative mode, the
acceleration and the deceleration can be different. The function
_7443_motion_done()is used to check whether the movement is complete.

The following diagram shows the trapezoidal profile.

There are 2 trapezoidal point-to-point functions supported by PPCI7443. In
the _7443_start_ta_move() function, the absolute target position must be
given in the unit of pulse. The physical length or angle of one movement is
dependent on the motor driver and the mechanism (includes the motor).
Since absolute move mode needs the information of current actual position,
the “External encoder feedback (EA, EB pins)” should be set in
_7443_set_feedback_src() function. And the ratio between command
pulses and external feedback pulse input must be appropriately set by
_7443_set_move_ratio() function.

In the _7443_start_tr_move() function, the relative displacement must be
given in the unit of pulse. Unsymmetrical trapezoidal velocity profile (Tacc is
not equal Tdec) can be specified in both _7443_start_ta_move() and
_7443_start_tr_move() functions.

The StrVel and MaxVel parameters are given in the unit of pulse per
second (PPS). The Tacc and Tdec parameters are given in the unit of
second represent accel./decel. time respectively. You have to know the
physical meaning of “one pulse” to calculate the physical value of the
relative velocity or acceleration parameters. The following formula gives the
basic relationship between these parameters.

V
el

oc
ity

(p
ps

)

StrVel

Tacc
Tdec

MaxVel

StrVel

Time (second)

Operation Theorem • 41

MaxVel = StrVel + accel*Tacc;
StrVel = MaxVel + decel *Tdec;

where accel/decel represents the acceleration/deceleration rate in unit of
pps/sec^2. The area inside the trapezoidal profile represents the moving
distance.

The unit of velocity setting is pulses per second (PPS). Usually, the unit of
velocity in the manual of motor or driver is in rounds per minute (rpm). A
simple conversion is necessary to match between these two units. Here we
use a example to illustrate the conversion.

For example:

A servomotor with a AB phase encoder is used in a X-Y table. The
resolution of encoder is 2000 counts per phase. The maximum
rotating speed of motor is designed to be 3600 rpm. What is the
maximum pulse command output frequency that you have to set on
PPCI7443?

Answer:

MaxVel = 3600/60*2000*4
= 48000pps

The reason why *4 is because there are four states per AB phase (See
Figures in Section 4.4).

Usually, the axes need to set the move ratio if their mechanical resolution is
different from the resolution of command pulse. For example, if an
incremental type encoder is mounted on the working table to measure the
actual position of moving part. A servomotor is used to drive the moving
part through a gear mechanism. The gear mechanism is used to convert the
rotating motion of motor into linear motion.(see the following diagram). If the
resolution of motor is 8000 pulses/round. The resolution of gear mechanism
is 100 mm/round.(i.e., part moves 100 mm if motor turns one round). Then
the resolution of command pulse will be 80 pulses/mm. If the resolution of
encoder mounting on the table is 200 pulses/mm, then users have to set the
move ratio as 200/80=2.5 by the function:

_7443_set_move_ratio (axis, 2.5);

Moving part

Motor Gear

Encoder

Table

42 • Operation Theorem

If this ratio is not set before issuing the start moving command, it will cause
problems when running in “Absolute Mode”. Because the PPCI7443 can’t
recognize the actual absolute position during motion.

Relative Functions:
_7443_start_ta_move() ,_7443_start_tr_move() : Refer to section 6.6
_7443_motion_done(): Refer to section 6.11
_7443_set_feedback_src(): Refer to section 6.4
_7443_set_move_ratio(): Refer to section 6.6

4.1.4 S-curve Motion Profile

This mode is used to move one axis motor to a specified position (or
distance) with a S-curve velocity profile. S-curve acceleration profiles are
useful for both stepper and servo motors. The smooth transitions between
the start of the acceleration ramp and the transition to the constant velocity
produce less wear and tear than a trapezoidal profile motion. The smoother
performance increases the life of the motors and mechanics of a system.

There are several parameters needed to be set in order to make a S-curve
move. They are:

Pos: target position in absolute mode, in unit of pulse.
Dist : moving distance in relative mode, in unit of pulse.
StrVel: specify the start velocity, in unit of PPS.
MaxVel: specify the maximum velocity, in unit of PPS.

Tacc pecify the time for acceleration (StrVel � MaxVel), in unit of
second.

Tdec: specify the time for deceleration (MaxVel � StrVel), in unit of
second.

SVacc : specify the S-curve region during acceleration, in unit of PPS.
SVdec : specify the S-curve region during deceleration, in unit of PPS.

Tacc Tdec

SVacc

SVacc SVdec

SVdec

Time
(Second)

Velocity
(PPS)

StrVel

MaxVel

Operation Theorem • 43

Normally, the accel/decel period consist of 3 regions, two SVacc/SVdec and
one linear. During the SVacc/SVdec, the jerk (second derivative of velocity)
is constant, and, during the linear region, the acceleration (first derivative of
velocity) is constant. In the first constant jerk region during acceleration, the
velocity goes from StrVel to (StrVel + Svacc). In the second constant jerk
region during acceleration, the velocity goes from (MaxVel – StrVel) to
MaxVel. Between them, the linear region accelerates velocity from (StrVel +
SVacc) to (MaxVel - SVacc) constantly. The deceleration period gets similar
rule.

Special case:

if user wants to vanish the linear region, the SVacc/SVdec must be
assigned “0” rather than 0.5*(MaxVel-StrVel).

Remember that the SVacc/SVdec is in unit of PPS and it should always
keep in the range of [0 ~ (MaxVel - Strvel)/2], where “0” means no linear
region.

The S-curve profile motion functions are designed to always produce
smooth motion. If the time for acceleration parameters combined with the
final position don’t allow an axis to reach the maximum velocity(i.e.: the
moving distance is too small to reach MaxVel), the maximum velocity is
automatically lowered (see the following Figure).

The rule is to lower the value of MaxVel and the Tacc, Tdec, SVacc, SVdec
automatically, and keep StrVel, acceleration and jerk unchanged. It is also
applicable to Trapezoidal profile motion.

Relative Functions:
_7443_start_sr_move(),_7443_start_sa_move() : Refer to section 6.6
_7443_motion_done(): Refer to section 6.11
_7443_set_feedback_src(): Refer to section 6.4
_7443_set_move_ratio(): Refer to section 6.6

V
el

oc
ity

(p
ps

)

Time (sec)

44 • Operation Theorem

The Following table shows the difference between all the single axis motion
functions, including Preset Mode (both trapezoidal and S-curve Motion) and
constant velocity mode .

Velocity Profile
Trapezoidal S-curve Relative Absolute

_7443_tv_move √ N/A ----------- -----------

_7443_sv_move N/A √ ----------- -----------

_7443_v_change √ √ ----------- -----------

_7443_sd_stop √ √ ----------- -----------

_7443_emg_stop() ----------- ------------ ----------- -----------

_7443_start_ta_move √ N/A N/A √

_7443_start_tr_move √ N/A √ N/A

_7443_start_sr_move N/A √ √ N/A

_7443_start_sa_move N/A √ N/A √

4.1.5 Linear interpolation for 2~4 axes

In this mode, any 2 of the 4, 3 of the 4 or all the 4 axes may be chosen to
perform linear interpolation. “Interpolation between multi-axes” means these
axes “start simultaneously, and reach their ending points at the same time”.
Linear means the ratio of speed of every axis is a constant value. Notice
that you can’t use 2 groups of 2 axes linear interpolation in one card at the
same time. But you can use one 2 axes linear and one 2 axes circular
interpolation at the same time. If you want to stop one interpolation group,
you can just use _7443_sd_stop() or _7443_emg_stop() with first axis of the
group as parameter to stop all axes of this interpolation.

2 axes linear interpolation

As the Figure below, 2 axes linear interpolation means to move the XY(or
any 2 of the 4 axis) position from P0 to P1. The 2 axes start and stop
simultaneously, and the path is a straight line.

The speed ratio along X-axis and Y-axis is (∆X : ∆Y), respectively, and the
vector speed is:

P0(X0,Y0)

P1(X1,Y1)

X-axis

Y
-a

xi
s

∆X

∆Y

22)()(
t

Y

t

X

t

P

∆
∆+

∆
∆=

∆
∆

Operation Theorem • 45

When calling the 2 axes linear interpolation functions, it is the vector speed
to define the start velocity, StrVel , and maximum velocity, MaxVel , Both
trapezoidal and S-curve profile are available.

Example:

_7443_start_tr_move_xy(0 , 30000.0 , 40000.0 , 1000.0 , 5000.0 , 0.1,0.2)

It will cause the X,Y axes (axes 0 & 1) of Card 0 to perform a linear
interpolation movement, in which:

∆�������������	
�

∆�������������	
�

������
�����	�

��������	����	�

�������	����	�

��������

��	�

����� �
����� 	�

�� �������	�� �� 	�

��������	��� 	�

�� ��

������	�

Acceleration time = 0.1 sec
Deceleration time = 0.2 sec

There are two groups of functions that provide 2 axes linear interpolation.
The first group divides the 4 axes into XY (axis 0 & axis 1) and ZU(axis 2 &
axis 3). By calling these functions, the target axes are already assigned.

_7443_start_tr_move_xy(), _7443_start_tr_move_zu(),
_7443_start_ta_move_xy(), _7443_start_ta_move_zu(),
_7443_start_sr_move_xy(), _7443_start_sr_move_zu(),
_7443_start_sa_move_xy(), _7443_start_sa_move_zu(),
: Refer to section 6.7

The second group allows user to freely assign the 2 target axes.
_7443_start_tr_line2(), _7443_start_sr_line2(),
_7443_start_ta_line2(),_7443_start_sa_line2(),
: Refer to section 6.7

The characters “t”, “s”, “r”, “a” after _7443_start means:

t – Trapezoidal profile
s – S-curve profile
r – Relative motion
a – Absolute motion

3 axes linear interpolation

Any 3 of the 4 axes of PPCI7443 may perform 3 axes linear interpolation.
As the figure below, 3 axes linear interpolation means to move the XYZ (if

46 • Operation Theorem

axes 0, 1, 2 are selected and assigned to be X, Y, Z respectively) position
from P0 to P1 and start and stop simultaneously. The path is a straight line
in space.

Operation Theorem • 47

The speed ratio along X-axis, Y-axis and Z-axis is (∆X : ∆Y : ∆Z),
respectively, and the vector speed is:

When calling those 3 axes linear interpolation functions, it is the vector
speed to define the start velocity, StrVel , and maximum velocity, MaxVel .
Both trapezoidal and S-curve profile are available.

For example:

_7443_start_tr_line3(….,1000.0 /*� X */ , 2000.0/*� � */, 3000.0 /*DistZ*/,
100.0 /*StrVel*/, 5000.0 /* MaxVel*/, 0.1/*sec*/, 0.2 /*sec*/)

∆������������	
�

∆������������	
�

∆������������	
�

������
�����	�

�������	����	��
������ 14 ������!���	��

��	��
�����"��� 14 ����������	�

#�	��
�����"��� 14 ����������	�

������
�����	�

���������	���	��
������� 14 ����������	��

��	��
�����"���� 14 �����!����	�

#�	��
�����"���� 14 ����������	

222)()()(
t

Z

t

Y

t

X

t

P

∆
∆+

∆
∆+

∆
∆=

∆
∆

P0(X0,Y0,Z0)

P1(X1,Y1,Z1)

X-Axis

Y
-A

xi
s

∆X

∆Y

Z-Axis

∆Z

48 • Operation Theorem

These functions related to 3 axes linear interpolation are listed below:

_7443_start_tr_line3(), _7443_start_sr_line3()
_7443_start_ta_line3() , _7443_start_sa_line3()
: Refer to section 6.7

The characters “t”, “s”, “r”, “a” after _7443_start means:

t – Trapezoidal profile
s – S-curve profile
r – Relative motion
a – Absolute motion

4 axes linear interpolation

In 4 axes linear interpolation, the speed ratio along X-axis, Y-axis, Z-axis
and U-axis Is (∆X: ∆Y: ∆Z: ∆U), respectively, and the vector speed is:

The functions related to 4 axes linear interpolation are listed below:

_7443_start_tr_line4(), _7443_start_sr_line4()
_7443_start_ta_line4(),_7443_start_sa_line4()
: Refer to section 6.7

The characters “t”, “s”, “r”, “a” after _7443_start means:

t – Trapezoidal profile
s – S-curve profile
r – Relative motion
a – Absolute motion

4.1.6 Circular interpolation for 2 axes

Any 2 of the 4 axes of PPCI7443 can perform circular interpolation. As the
example below, the circular interpolation means XY (if axes 0, 1 are
selected and assigned to be X, Y respectively) axes simultaneously start
from initial point, (0,0) and stop at end point,(1800,600). The path between
them is an arc, and the MaxVel is the tangent speed.

Example:

_7443_start_a_arc_xy(0 /*card No*/, 1000,0 /*center X*/, 0 /*center Y*/,
1800.0 /* End X */, 600.0 /*End Y */ ,1000.0 /* MaxVel */)

2222)()()()(
t

U

t

Z

t

Y

t

X

t

P

∆
∆+

∆
∆+

∆
∆+

∆
∆=

∆
∆

Operation Theorem • 49

To specify a circular interpolation path, the following parameters must be
clearly defined.

Center point: The coordinate of the center of arc (In absolute mode) or

The off_set distance to the center of arc(In relative mode)

End point: The coordinate of end point of arc (In absolute mode) or

The off_set distance to center of arc (In relative mode)

Direction: The moving direction, either CW or CCW.

It is not necessary to set radius or angle of arc, since the information above
gives enough constrains. The arc motion stopped when either of the 2 axes
reached end point.

There are two groups of functions that provide 2 axes circular interpolation.
The first group divides the 4 axes into XY (axis 0 & axis 1) and ZU(axis 2 &
axis 3). By calling these functions, the target axes are already assigned.

_7443_start_r_arc_xy(), _7443_start_r_ arc _zu(),
_7443_start_a_ arc _xy(), _7443_start_a_ arc _zu(),
: Refer to section 6.8

The second group allows user to freely assign any 2 target axes.
_7443_start_r_arc2(),_7443_start_a_arc2(),
: Refer to section 6.8

X

Y

(0,0) Center
(1000,0)

(1800,600)

50 • Operation Theorem

4.1.7 Circular interpolation with Acc/Dec time

In section 4.1.6, the circular interpolation functions don't have acceleration
and deceleration parameters. It can't perform a Trapezoidal or S-curve
speed profile during operation. Sometimes, users need this kind of speed
profile to make their machine run smoothly in circular interpolation mode.
PPCI7443 has another groups of circular interpolation functions to perform
it but they need Axis3 as an aided axis to run it. It means users can't use
Axis3 for other purpose when running these functions. For example, users
need Axis0 and Axis1 to perform a circular interpolation with Trapezoidal
speed profile. They can use _7443_start_tr_arc_xyu() to run it. The function
name tells users not only Axis0 and Axis1 but also Axis3 will be used.
(Axis0=x,Axis1=y,Axis2=z,Axis3=u). For the full lists of these
functions,please refer to section 6.8.

_7443_version_info() will return a hardware information for this card. If the
hardware version number's 4th digit is greater than 0, for example '1003',
users can use another group of circular interpolation to perform S-curve or
Trapezoidal speed profile without Axis3 for aid. For example, users need
Axis2 and Axis3 to perform a circular interpolation with Trapezoidal speed
profile. They can use _7443_start_tr_arc_zu() to run it. If the hardware
version number's 4th digit is 0, for example '3' or '0', users can't use this
function group. For the full lists of these functions, please refer to section
6.8.

Time

S
pe

ed
(p

ps
)

Tsacc

Tlacc

Tsacc

Operation Theorem • 51

4.1.8 The Relationship between Velocity and Acceleration
Time.

The maximum velocity parameter of a motion function has a minimum value
of the acceleration time eventually. It means that there has a range in
acceleration time over one velocity value. Sometimes, users want to get a
smaller acceleration time under these relationships. If they want to do so,
they must higher the maximum velocity value to match their smaller
acceleration time’s requirement. We provide one function for doing that:
_7443_fix_speed_range(). This function can raise the maximum velocity
value which will get a smaller acceleration time. But it won’t affect the actual
velocity you want. For example: You want to have 1ms acceleration time
from velocity 0 to velocity 5000(pps) but the setting can’t match this
specification. You can use this function with a higher velocity setting before
the motion function. The program will like this:

_7443_fix_speed_range(AxisNo,OverVelocity);
_7443_start_tr_move(AxisNo,5000,0,5000,0.001,0.001);

How to decide a optimized value of the “OverVelocity” in the
_7443_fix_speed_range() function? We provide a function for calculating it.
_7443_verify_speed(). The input value of this function is motion command’s
start velocity, maximum velocity and over velocity. The output value will be
the minimum and maximum value of the acceleration time. For example:
You want to see the original acceleration range of this command.

_7443_start_tr_move(AxisNo,5000,0,5000,0.001,0.001).

MiniT1

MiniT2

MiniT3

MiniT4

MaxV1

MaxV2

MaxV3

MaxV4

Velocity

52 • Operation Theorem

You can try this function:

_7443_verify_speed(0,5000,&minAccT, &maxAccT,5000);

The value of minAccT will be 0.0267sec and maxAccT will be 873.587sec.
This minimum acceleration time can’t match our requirements, so we must
use over speed value to do that.

If we use over speed as 20000,

_7443_verify_speed(0,5000,&minAccT, &maxAccT,20000);

The value of miniAccT will be 0.00666sec and maxAccT will be 218.387sec.
This minimum acceleration time still can’t match our requirements. If we use
over speed as 140000,

_7443_verify_speed(0,5000,&minAccT, &maxAccT,140000);

The value of miniAccT will be 0.000948sec and maxAccT will be 31.08sec.
This minimum acceleration time can match our requirements. So, the
motion command will be like this.

_7443_fix_speed_range(AxisNo,140000);

_7443_start_tr_move(AxisNo,5000,0,5000,0.001,0.001);

[Note1] The return value of _7443_verify_speed() is a minimum velocity of
your motion command, it will not always equal to your start velocity setting.
In the above example, it will be 3pps more than your 0pps setting.

[Note2] Once you don’t need a fixed over speed setting, you can use
_7443_unfix_speed_range() to disable it.

[Note3] Don’t try to use the over speed all the time, you must know when
you need it. Remember that more over speed setting will results in coarser
speed interval.

Operation Theorem • 53

Example:

User’s Desired Profile : (MaxV2 , Target T) But this is not possible under
this MaxV2 according to (MaxV, MiniT) relationship. So we must change the
(MaxV, MiniT) relationship to a higher one, (MaxV1 , MiniT1). Finally, the
command would be

_7443_fix_speed_range(AxisNo, MaxV1);

_7443_start_tr_move(AxisNo,Distance, 0 , MaxV2 , Target T, Target T);

Relative Functions:
_7443_fix_speed_range(), _7443_unfix_speed_range(),_7443_verify_speed()
: Refer to section 6.5

Target T

MiniT2

MaxV1

MaxV2

Velocity

MiniT1

54 • Operation Theorem

4.1.9 Continuous motion

The PPCI7443 allow user to perform continuous motion. Both single axis
movement (section 4.1.3: Trapezoidal, section 4.1.4: S-curve) and multi-
axis interpolation (4.1.5: linear interpolation, 4.1.6: circular interpolation) can
be extended to be continuous motion.

For example, if user calls the follow function to perform a single axis preset
motion:

_7443_start_ta_move(0,50000.0,100.0,30000.0,0.1,0.0)

It will cause the axis “0” to move to position “50000.0”, before the axis
arrives, user can call a second pressed motion:

_7443_start_tr_move(0,20000.0,100.0,30000.0,0.0,0.2)

The second function call won’t affect the first one, actually it will be
executed and write into the pre-register in PPCI7443. After the first move is
finished, PPCI7443 will continue the second move according to the pre-
register value. So, no time interval exists between these two moves. And
pulses will be continuously generated at the instant of position “50000.0”

The working theory of continuous motion is described below:

working theory of continuous motion

The following diagram shows the register data flow of PPCI7443.

Running
Register

Pre-reg
1

Pre-reg
2

Pre-register empty
interrupt

Host
Program

Next Command
loading

Operation Theorem • 55

Step 0: All Register and Pre-Register is empty.

Step 1: The first motion is executed and CPU writes corresponding values
into pre-register 2.

_7443_start_ta_move(0,50000.0,100.0,30000.0,0.1,0.0)

Step 2: Since Pre-register1 & Register is empty, the data in pre-register 2 is
moved to Register automatically and executed instantly by ASIC.

Step 3: Then second function is called. CPU writes the corresponding
values into pre-register2.

_7443_start_tr_move(0,20000.0,100.0,30000.0,0.0,0.2)

Step 4: Since Pre-register1 is empty; the data in pre-register 2 is moved to
Pre-register1 automatically and wait to be executed.

Step 5: Now user can execute 3rd function, and it will be stored in Pre-
register2

Step 6: When the first function finished, the Register becomes empty, and
data in pre-register1 is allowed to move to register then executed instantly
by ASIC, and, data in pre-register2 is moved to pre-register1.

Step 7: The ASIC will inform CPU by interrupt that motion is completed. And
user can write 4th motion into Pre-Register 2.

Procedures to perform continuous motion

The following procedures are to help user making continuous motion.

Step 1:

(if Under Dos)

Enable the interrupt service by _7443_int_contol()

(if Under Windows)

Enable the interrupt service by _7443_int_contol() and
_7443_int_enable() .

Step 2: Set bit “2” of INT factor to be “True” by _7443_set_int_factor()

Step 3: Set the “conti_logic” to be “1” by: _7443_set_continuous_move()
(note: if all motions are of relative mode, this function could be
ignored.)

Step 4: Call the first three motion functions.

Step 5: Wait for INT(under DOS) or EVENT(under Windows) of pre-register
empty.

56 • Operation Theorem

Step 6: call the 4th motion function.

Step 7: Wait for INT(if under DOS) / EVENT(if under Windows) of pre-
register empty.

Step 8: call the 5th motion function.

(Repeat 7 , 8 ……continue…..)

Step n: Call the last motion function and wait for all moves completion.

(note: Another way to detect completion of motion is by poling. User may
constantly check the buffer status by _7443_check_continuous_buffer() .)

Restrictions of continuous motion

The statements below are restrictions and suggestions for continuous
motion:

1. While Pre-register is not empty, user may not execute any more motion.
Otherwise, the new one will overwrite the previous in pre-register2.

2. To get a continuity of velocity between 2 motions, the end velocity of
previous and starting velocity of next must be the same. There are
several methods to achieve this. The easiest way is to set the
deceleration/acceleration time to be ‘0’.

For example :

1st motion: _7443_start_tr_move_XY(0,1000,0,0,5000,0.2, 0.0)

(Start a relative 2-axis linear interpolation, x distance=1000, y
distance= 0 , start vel = 0, max vel = 5000, Tacc = 0.2, Tdec = 0)

2nd motion: _7443_start_r_arc_xy(0,0,500,500,500,1,5000);

(Start a relative 2-axis circular interpolation, center x distance=0,
center y distance= 500 , End x distance = 500, end y distance =
500. max vel = 5000. It is a quarter ccw circle, with velocity = 5000)

3rd motion: _7443_start_tr_move_XY(0,0,1000,0,5000,0.0, 0.2)

(Start a relative 2-axis linear interpolation, x distance=0, y
distance= 1000 , start vel = 0, max vel = 5000, Tacc = 0.0,Tdec = 0)

Operation Theorem • 57

Explanation of example:

While these three motions were executed sequentially without waiting, the
1st occupies the Rigister and is executed instantly; the 2nd occupies Pre-
Rigister 1and is waiting for completion of 1st; the 3rd occupies Pre-Rigister 2
and is waiting for completion of 2nd . Since the 1st motion has a ‘0’
deceleration time and 2nd is a arc of constant velocity, which is the as the
max vel of the 1st, the PPCI7443 will output constant frequency at
intersection between them.

1. Continuous motion between different axes is meaningless, for different
axis get its own register and pre-register system.

2. Continuous motion between different number of axes is not allowed, for
example: _7443_start_tr_move() can not be followed by
_7443_start_ta_move_XY() , vice versa, because these two functions
belong to single axis and 2-axis mode individually.

3. It is possible to perform 3 axes or 4 axes continuous linear interpolation,
but the speed continuity is impossible to achieve.

4. If any absolute mode is used during continuous motion, make sure that
the _7443_reset_target_pos() is executed at least once after home
move.(please refer to 4.1.8: Home return mode)

Dist = 1000

Dist = 1000

R = 500(1)
(2)

(3)

58 • Operation Theorem

Examples of continuous motion

The following are example of continuous motion:

1. Single axes continuous motion: Changing velocity at preset point.

This example demonstrates how to use continuous motion function to
achieve the velocity changing at pre-set point. The 1st motion (ta) moved
axis to point A, with Tdec =0, and then the 2nd continued instantly. The start
velocity of (2) is the same with max velocity of (1), so that the velocity
continuity exists at A. At point B. the Tacc of (3) is set to be 0, so the
velocity continuity is also built.

2. 2-axis continuous interpolation:

This example demonstrates how to use continuous motion function to
achieve 2-axis continuous interpolation. In this application, the velocity
continuity is the key concern. Please refer to the example in previous page.

The functions related to continuous motion are listed below:

_7443_set_continuous_move(), _ 7443_check_continuous_buffer()

: Refer to section 6.17

Time

Velocity

Tdec=0 Tacc = 0

(1)
(2)

(3)
A. B.

Operation Theorem • 59

4.1.10 Home Return Mode

In this mode, you can let the PPCI7443 output pulses until the condition to
complete the home return is satisfied after writing the command
_7443_home_move (). There are 13 home moving modes provided by
PPCI7443. The “home_mode” of function _7443_set_home_config()
is used to select one’s favorite.

After completion of home move, it is necessary to keep in mind that all the
position related information should be reset to be “0”. In PPCI7443, there
are 4 counters and 1 software-maintained position recorder. They are :

Command position counter: To count the number of pulses output

Feedback position counter: To count the number of pulse input

Position error counter: To count the error between command and
feedback pulse number.

General-Purposed counter: The source could be configured as pulse
output, feedback pulse, manual pulser or CLK/2.

Target position recorder: To record the target position

(Please refer to section 4.4 for more detail explanation about position
counters)

After Home move complete, the first four counters will be cleared to “0”
automatically. However the target position recorder won’t. Because it is a
software maintained, it is necessary to manually set the target position to
“0” by calling the function: _7443_reset_target_pos(). So that, all the
positions information will be “0”.

The following figures show the various home mode and the reset point,
when the counter will be clear to “0”.

60 • Operation Theorem

home_mode = 0: ORG � Slow down � Stop

� When SD(Ramp-down signal) is inactive.

� When SD(Ramp-down signal) is active.

home_mode = 1 : ORG � Slow down � Stop at end of ORG

ORG

EL

Case 1

Case 2

Case 3
Reset

ORG

EL

Case 1

Case 2

Case 3

SD

Reset

ORG

EL

Case 1

Case 2

Case 3

Reset

Operation Theorem • 61

home_mode = 2 : ORG � Slow down � Stop on EZ signal

home_mode = 3 : ORG � EZ� Slow down � Stop

ORG

EL

Case 1

Case 3

Case 4

EZ

Case 2

(EZ_Count = 1)

(EZ_Count = 2)

Reset

Reset

ORG

EL

Case 1

Case 3

Case 4

EZ

Case 2

(EZ_Count = 1)

(EZ_Count = 2)

Reset Reset

62 • Operation Theorem

home_mode = 4 : ORG � Slow down � Go back at FA speed � EZ�
Stop

home_mode = 5 : ORG � Slow down � Go back � Accelerate to
MaxVel � EZ� Slow down � Stop

ORG

EL

Case 1

Case 3

Case 4

EZ

Case 2

(EZ_Count = 1)

(EZ_Count = 0)

FA

FA

Reset

Reset

ORG

EL

Case 1

Case 3

Case 4

EZ

Case 2

(EZD = 1)

(EZD = 0)
Reset

Reset

Operation Theorem • 63

home_mode = 6 : EL only

home_mode = 7 : EL � Go back � Stop on EZ signal

home_mode = 8 : EL � Go back � Accelerate to MaxVel � EZ �
Slow down � Stop

EL

Case 1

Reset

EL

Case 1

EZ

FA

(EZ_Count = 1)

Reset

EL

Case 1

EZ

(EZD = 1)

Reset

64 • Operation Theorem

home_mode = 9 : ORG � Slow down � Go back � Stop at beginning
edge of ORG

home_mode = 10 : ORG � EZ � Slow down � Go back � Stop at
beginning edge of EZ

ORG

EL

Case 1

Case 2

Case 3

Reset

ORG

EL

Case 1

Case 3

Case 4

EZ

(EZ_Count = 1)

Reset

Operation Theorem • 65

home_mode = 11 : ORG � Slow down � Go back (backward) �
Accelerate to MaxVel � EZ� Slow down � Go back again (forward) �
Stop at beginning edge of EZ

home_mode = 12 : EL � Stop � Go back (backward) � Accelerate to
MaxVel � EZ � Slow down � Go back again (forward) � Stop at
beginning edge of EZ

ORG

EL

Case 1

Case 3

Case 4

EZ

Case 2

(EZ_Count = 1)

(EZ_Count = 0)

Reset

Reset

EL

Case 1

EZ

(EZ_Count = 1)

Reset

66 • Operation Theorem

� Home Search Example (Home mode =1)

FL=Start Velocity
FH=Max Velocity (the sign stands for direction)
FA=Search Speed (half of the FH)

Relative Functions:
Moving Steps
1. Home searching start (-)
2. –EL touches, slow down and reverse moving (+)
3. ORG touches, slow down
4. Escape from ORG according to ORG offset
5. Start searching again (-)
6. ORG touches, slow down then using searching speed to escape

ORG (+)
7. After escape ORG, search ORG with search speed again (-)

Relative Functions:
_7443_set_home_config(), _7443_home_move(), _7443_home_search(),
_7443_auto_home_search() : Refer to section 6.9

ORG+EL -EL

Start/Direction (-)

ORG Offset

Operation Theorem • 67

4.1.11 Manual Pulser Mode

For manual operation of a device, you may use a manual pulser such as a
rotary encoder. The PPCI7443 can input signals from the pulser and output
corresponding pulses from the OUT and DIR pins, thereby allowing you to
simplify the external circuit and control the present position of axis. This
mode is effective when a _7443_pulser_vmove(), _7443_pulser_pmove()
or _7443_pulser_home_move() command has been called. To stop, by a
_7443_sd_stop() or_7443_emg_stop() command or till satisfaction of
movement.

The PPCI7443 receives plus and minus pulses (CW/CCW) or 90 degrees
phase difference signals(AB phase) from the pulser at PA and PB pins. To
set the input signal modes of pulser, use _7443_set_pulser_iptmode()
function. The 90° � phase difference signals can be input through
multiplication by 1, 2 or 4. If the AB phase input mode is selected, the PA
and PB signals should be with 90° phase shifted, and the position counting
is increasing when the PA signal is leading the PB signal by 90° phase.

Relative Functions:

_7443_pulser_vmove(), _7443_pulser_pmove(), _7443_pulser_home_move(),

_7443_set_pulser_iptmode(): Refer to section 6.10

4.1.12 Timer Mode

In this mode, user can delay the execution of program by a specified delay
time (msec).

For example._7443_delay_time (0, 100); after executing this command,
there will be 100 msec delay before executing next command.It is the

Relative Functions:

_7443_delay_time(): Refer to Section 6.1

68 • Operation Theorem

4.1.13 Pulser Interpolation

It is possible to use pulser for interpolation of motion (any of two axes on
linear interpolation or any of two axes on circular interpolation). This mode
can only work under incremental mode. Refer to the following diagram,
when one of the axes function is used as dummy axis, this axis will not be
allowed to used for interpolation. For example, when No. 4 axis is used as
dummy axis, then any two axes of No.1 ~ No.3 axes can be used as
interpolation axes.

� Any of two axes for linear interpolation
Referring to the above diagram, by executing
_7443_pulser_r_line2() command, it is possible to execute linear
interpolation motion. The axes used for interpolation can be set by
AxisArray parameter. _7443_pulser_r_line2(): please refer to
Section 6.10

� Any of two axes for circular interpolation
Referring to the above diagram, by executing _7443_pulser_r_arc2()
command, it is possible to execute circular interpolation motion. The
axes used for interpolation can be set by AxisArray parameter.
_7443_pulser_r_line2(): please refer to Section 6.10

PB1
PA1

CN3

PB2
PA2

DIR4
OUT4

CN2

Operation Theorem • 69

4.2 The motor driver interface

The PPCI7443 provides the INP, ALM, ERC, SVON, RDY signals for
servomotor driver’s control interface. The INP and ALM are used for
feedback the servo driver’s status. The ERC is used to reset the servo
driver’s deviation counter under special conditions. The SVON is general-
purposed output signal, and RDY is general-purposed input signal. The
meaning of “general-purposed” is that the processing of signal is not a
build-in procedure of hardware. The hardware processes INP, ALM and
ERC signals according to pre-defined rule. For example, when receiving
ALM signal, the PPCI7443 stop or decelerate to stop output pulses
automatically. However, SVON and RDY are not that case, they actually act
like common I/O.

4.2.1 INP

The processing of INP signal is a hardware build-in procedure, and it is
designed to cooperate with the in-position signal of servomotor driver.

Usually, servomotor driver with pulse train input has a deviation (position
error) counter to detect the deviation between the input pulse command and
feedback counter. The driver controls the motion of servomotor to minimize
the deviation until it becomes 0. Theoretically, the servomotor operates
with some time delay from command pulses. Accordingly, when the pulse
generator stops outputting pulses, the servomotor does not stop but keep
running until the deviation counter become zero. Then, the servo driver
sends out the in-position signal (INP) to the pulse generator to indicate the
motor stops running.

Usually, the PPCI7443 stops outputting pulses upon completion of
outputting designated pulses. But by setting parameter inp_enable in
_7443_set_inp() function, you can delay the completion of motion to the
time when the INP signal is turned on, ie, the motor arrives the target
position. Status of _7443_motion_done() and INT signal are also delayed.
That is, when performing under position control mode, the completion of
_7443_start_ta_move() , _7443_start_sr_move() ,…etc, is delayed until
INP signal is turned ON.

The in-position function can be enable or disable, and the input logic
polarity is also programmable by parameter “inp_logic” of _7443_set_inp() .
The INP signal status can be monitored by software function:
_7443_get_io_status() .

Relative Functions:
_7443_set_inp() : Refer to section 6.12
_7443_get_io_status() : Refer to section 6.13
_7443_motion_done() : Refer to section 6.11

70 • Operation Theorem

4.2.2 ALM

The processing of ALM signal is a hardware build-in procedure, and it is
designed to cooperate with the alarm signal of servomotor driver.

The ALM signal is an output from servomotor driver. Usually, It is designed
to inform that something wrong with the driver or motor.

The ALM pin receives the alarm signal output from the servo driver. The
signal immediately stops the PPCI7443 from generating pulses or stops it
after deceleration. If the ALM signal is in the ON status at the start, the
PPCI7443 outputs the INT signal without generating any command pulse.
The ALM signal may be a pulse signal, of which the shortest width is a time
length of 5 microseconds.

You can change the input logic of ALM by set the parameter “alm_logic ” of
_7443_set_alm function and the stop mode by “alm_mode ”. Whether or
not the PPCI7443 is generating pulses, the ALM signal lets it output the INT
signal.. The ALM status can be monitored by software function:
_7443_get_io_status() . The ALM signal can generate IRQ if the interrupt
service is enabled, please refer to section 4.7.

Relative Functions:
_7443_set_alm() : Refer to section 6.12
_7443_get_io_status() : Refer to section 6.13

Operation Theorem • 71

4.2.3 ERC

The ERC signal is an output from PPCI7443. The processing of ERC signal
is a hardware build-in procedure, and it is designed to cooperate with the
deviation counter clear signal of servomotor driver.

The deviation counter clear signal is inserted in the following 4 situations:

�1��home return is complete;

�2�� the end-limit switch is active;

�3��an alarm signal stops OUT and DIR signals;

�4��an emergency stop command is issued by software operator.

Since the servomotor operates with some delay from pulse generated from
the PPCI7443, it keeps moving till the deviation counter of the driver down
to zero even if the PPCI7443 stop outputting pulses because of the ±EL
signal or the completion of home return. The ERC signal allows you to
immediately stop the servomotor by resetting the deviation counter to zero.
The ERC signal is output as an one-shot signal. The pulse width is a time
length defined by function call _7443_set_erc() . The ERC signal will
automatically output when ±EL signals, ALM signal is turned on to
immediately stop the servomotor.

Relative Functions:
_7443_set_erc() : Refer to section 6.12

4.2.4 SVON and RDY

In PPCI7443, every axis is equipped with SVON and RDY, which are
general-purposed output and input channels, respectively. Usually, the
SVON is useful to cooperate with servomotor drivers as Servo ON
command, and RDY to receive the Servo Ready signal from servomotor
drivers. That is the reason why they are named as SVON and RDY. There
is no build-in procedure for SVON and RDY.

The SVON signals are controlled by software function: _7443_Set_Servo() .

RDY pins are dedicated for digital input use. The status of this signal can be
monitored by software function _7443_get_io_status() .

Relative Functions:

_7443_Set_Servo(): Refer to section 6.12
_7443_get_io_status(): Refer to section 6.13

72 • Operation Theorem

4.3 The limit switch interface and I/O status

In this section, the following I/O signals’ operations are described.

� SD/PCS: Ramping Down & Position Change sensor

� ±EL: End-limit sensor
� ORG: Origin position

In any operation mode, if an ±EL signal is active during moving condition, it
will cause PPCI7443 to stop output pulses automatically. If an SD signal is
active during moving condition, it will cause PPCI7443 to decelerate. If
operating in multi-axes mode, it automatically applied to all related axes.

4.3.1 SD/PCS

The SD/PCS pin for each axis is an input channel and is selectable to
connect into SD (Slow Down) or Position Change Signal(PCS). To
configure it, by function call _7443_set_sd_pin() .

When SD/PCS pin is directed to SD (the default setting), the PCS signal will
be kept in low level. And, while as PCS is selected, the SD signal will be
kept in low level. Users need to take care the logic and enable/disable
attributes for signal not used.

The slow-down signals are used to force the output pulse (OUT and DIR) to
decelerate to and then keep on the StrVel when it is active. The StrVel is
usually smaller than MaxVel, so, this signal is very useful to protect the
mechanism moving under high speed toward the mechanism limit. SD
signal is effective for both plus and minus directions.

The ramping-down function can be enable or disable by software function:
_7443_set_sd() . The input logic polarity, level operation mode, or latched
input mode can also be set by this function. The signals status can be
monitored by _7443_get_io_status() .

The PCS signal is used to define the starting point of a preset tr, sr motion.
Refer to the following chart. The logic of PCS is configurable by
_7443_set_pcs_logic()

Start_tr_move
(Dist = 1000)

Area = 1000 pulse

PCS

Velocity Time

Operation Theorem • 73

Relative Functions:

_7443_set_sd_pin(),_ 7443_set_pcs_logic(): Refer to section 6.5
_7443_set_sd(): Refer to section 6.12
_7443_get_io_status(): Refer to section 6.13

4.3.2 EL

The end-limit signals are used to stop the control output signals (OUT and
DIR) when the end-limit is active. There are two possible stop modes, one
is “stop immediately”, and, the other is “decelerate to StrVel then stop”. To
select the mode: _7443_set_el().

PEL signal indicates end-limit in positive (plus) direction. MEL signal
indicates end-limit in negative (minus) direction. When the output pulse
signals (OUT and DIR) are toward positive direction, the pulse train will be
immediately stopped when the PEL signal is inserted, while the MEL signal
is meaningless in this case, and vise versa. When the PEL is inserted, only
the negative (minus) direction output pulse can be generated for moving the
motor to negative (minus) direction.

The EL signal can generate IRQ if the interrupt service is enabled, please
refer to section 4.7.

You can use either ‘a’ contact switch or ‘b’ contact switch by setting the dip
switch S1. The PPCI7443 is delivered from the factory with all bits of S1
set to ON.

The signal status can be monitored by software function:
_7443_get_io_status().

Relative Functions:

_7443_set_el(): Refer to section 6.12
_7443_get_io_status(): Refer to section 6.13

4.3.3 ORG

The ORG signal is used, when the motion controller is operated at the
home return mode. There are 13 home return modes (please refer to
section 4.1.8), you can select one of them by setting “home_mode”
argument in software function: _7443_set_home_config() . The logic
polarity of the ORG signal, level input or latched input mode are selectable
by this software function.

After setting the configuration of home return mode by
_7443_set_home_config() , a _7443_home_move() command can
perform the home return function.

Relative Functions:

74 • Operation Theorem

_7443_set_home_config(),_7443_home_move(): Refer to section 6.9

Operation Theorem • 75

4.4 The Counters

The PPCI7443 provides 4 counters for every axis, and, they are introduced
in this section:

Command position counter: To count the number of pulses output

Feedback position counter: To count the number of pulse input

Position error counter: To count the error between command and
feedback pulse number.

General-Purposed counter: The source could be configured as pulse
output, feedback pulse, manual pulser or CLK/2.

Also, the target position recorder , a software-maintained position recorder,
is discussed.

4.4.1 Command position counter

The command position counter is a 28-bits binary up/down counter, and its
input source is the output pulse from PPCI7443, thus, it provide as exact
information of current command position. Note: the command position is
different from target position. The command position increases or
decreases as pulse output, while the target position changes only when a
new motion command was executed. The target position is recorded by
software, and need manually resetting after home move completed.

The command position counter will be clear to “0” automatically after home
move completed. Besides, the function call, _7443_set_command() , can
be executed in any time to set an new command position value. To read
current command position: _7443_get_command().

Relative Functions:
_7443_set_command(),_7443_get_command(): Refer to section 6.15

4.4.2 Feedback position counter

The PPCI7443 has a 28-bits binary up/down counter for managing the
present position feedback for each axis. The counter counts signals input
from EA and EB pins.

It can accept 2 kinds of pulse input: (1). plus and minus pulses

input(CW/CCW mode); (2). 90� phase difference signals(AB phase mode).

90� phase difference signals may be selected to be multiplied by a factor of

76 • Operation Theorem

1,2 or 4. 4x AB phase mode is the most commonly used for incremental
encoder input. For example, if a rotary encoder has 2000 pulses per phase
(A or B phase), then the value read from the counter will be 8000 pulses per
turn or –8000 pulses per turn depends on its turning direction. These input
modes can be selected by _7443_set_pls_iptmode() function.

In case that some applications don’t implement an encoder, it is possible to
set the feedback counter source to be the output pulse, just as the
command counter. Thus, the feedback counter and the command counter
will actually have the same value. To enable the counters counting pulses
input from pulse output, set “Src ” parameter of software function
_7443_set_feedback_src () to “1”.

Plus and Minus Pulses Input Mode(CW/CCW Mode)

The pattern of pulses in this mode is the same as Dual Pulse Output Mode
in Pulse Command Output section, expect that the input pins are EA and
EB.

In this mode, pulse from EA causes the counter to count up, whereas EB
caused the counter to count down.

90���� phase difference signals Input Mode(AB phase Mode)

In this mode, the EA signal is 90� phase leading or lagging in comparison
with EB signal. Where “lead” or “lag’ of phase difference between two
signals is caused by the turning direction of motors. The up/down counter
counts up when the phase of EA signal leads the phase of EB signal.
The following diagram shows the waveform.

The index inputs (EZ) signals of the encoders are used as the “ZERO”
index. This signal is common on most of the rotational motors. EZ can be
used to define the absolute position of the mechanism. The input logic
polarity of the EZ signals is programmable by software function
_7443_set_home_config(). The EZ signals status of the four axis can be
monitored by get_io_status() .

EA

EB

Negative Direction

EA

EB

Positive Direction

Operation Theorem • 77

The feedback position counter will be clear to “0” automatically after home
move completed. Besides, the function call, _7443_set_position() , can be
executed in any time to set an new command position value. To read
current command position: _7443_get_position().

Relative Function:
_7443_set_pls_iptmode(), _7443_set_feedback_src() :Refer to section 6.4
_7443_set_position(), _7443_get_position(): Refer to section 6.15
_7443_set_home_config(): Refer to section 6.9

4.4.3 Position error counter

The position error counter is used to calculate the error between command
position and feedback position. The working theory is that it adds one count
when PPCI7443 output one pulse and subtracts one count when PPCI7443
receives one pulse (from EA,EB). It is very useful to detect the step-losing
situation (stall) of stepping motors when encoder is applied.

Since the position error counter automatically calculate the difference
between pulse output and pulse feedback, it is inevitable to get error if the
motion ratio is not equal to “1”.

To get the position error, use the function call: _7443_get_error_counter().
To reset the position error counter, use the function call:
_7443_reset_error_counter(). The position error counter will automatically
clear to “0” after home move complete.

Relative Function:
_7443_get_error_counter(),_7443_reset_error_counter() :Refer to section 6.15

4.4.4 General-Purposed counter

The source of general-purposed counter is the most versatile, it could be:

1. Pulse output - just as command position counter
2. Pulse input – just as feedback position counter
3. Manual Pulser inpu t – the default status.
4. Clock – an accurate timer. (9.8 MHz)

The default source of general-purposed counter is manual pulser. (Please
refer to section 4.1.9 for detail explanation of manual pulser) To set other
source, use the function call: _7443_set_general_counter(). To get the
counter value, use the function call: _7443_get_general_counter().

Relative Function:

78 • Operation Theorem

_7443_set_general_counter(), _7443_get_general_counter()
: Refer to section 6.15

Counter Descriptio
n

Counter
Source

Function Function description

_7443_set_comm
and

Set a new value for command
position

Command
position

To count
the number
of pulses
output

pulses output

_7443_get_com
mand

Read current command
position:

_7443_set_pls_ip
tmode

Select the input modes of
EA/EB

_7443_set_feedb
ack_src

Set the counters input source

_7443_set_positi
on

Set a new value for feedback
position

Feedback
position

To count
the number
of pulse
input

EA/EB or
pulse output

_7443_get_positi
on

Read current feedback
position:

_7443_get_error_
counter

To get the position error, use
the function call:

Position
error

To count
the error
between
command
and
feedback
pulse

EA/EB and
pulse output

_7443_reset_erro
r_counter

To reset the position error
counter

_7443_set_gener
al_counter

Set a new counter valueGeneral-
Purposed

General-
purposed
counter

Pulse output
EA/EB
manual pulse r
CLK/2.

_7443_get_gener
al_counter

Read current counter value

Operation Theorem • 79

4.4.5 Target position recorder

The target position recorder is very useful for providing target position
information. For example, if the PPCI7443 is operating in continuous motion
with absolute mode, the target position let next absolute motion knows the
target position of previous one.

It is very important to know that the target position recorder is handled by
software. Every time when a new motion command is executed, the
displacement is added automatically into the target position recorder. To
make sure the correctness of target position recorder, user needs to
manually maintain it in the following two situations by the function call
_7443_reset_target_pos() :

1. After Home move complete
2. After new feedback position is set

Relative Functions:
_7443_reset_target_pos(): Refer to section 6.15

80 • Operation Theorem

4.5 Multiple PPCI7443 Cards Operation

The software function library support maximum up to 12 PPCI7443 Cards,
that means maximum up to 48 axes of motors can be controlled. Since
PPCI7443 has the characteristic of Plug-and-Play, users do not have to
care about setting the Based address and IRQ level of cards. They are
automatically assigned by the BIOS of system when booting up. Users can
utilize PPCI7443 Utility to check if the plugged PPCI7443 cards are
successfully installed and see the Base address and IRQ level assigned by
BIOS.

One thing needed to be noticed by users is to identify the card number of
PPCI7443 when multiple cards are applied. The card number of one
PPCI7443 depends on the locations on the PCI slots. They are numbered
either from left to right or right to left on the PCI slots. These card numbers
will effect the corresponding axis number on the cards. And the axis number
is the first argument for most functions called in the library. So it is
important to identify the axis number before writing application programs.
For example, if 3 PPCI7443 cards are plugged in the PCI slots. Then the
corresponding axis number on each card will be:

Axis No.
Card No. Axis 1 Axis 2 Axis 3 Axis 4

1 0 1 2 3
2 4 5 6 7
3 8 9 10 11

If we want to accelerate Axis 3 of Card2 from 0 to 10000pps in 0.5sec for
Constant Velocity Mode operation. The axis number should be 6. The code
on the program will be:

_7443_start_tv_move(6, 0, 10000, 0.5);

To determine the right card number, Try and Error may be necessary before
application. PPCI7443 Utility can be utilized to minimize the search time.

For applications needed to move many axes simultaneously on multiple
PCI_7443 cards, users should follow the connection diagrams in Section
3.12 to make connections between their CN4 connectors. Several functions
illustrated in Section 6.8 may be useful when writing programs for such
applications.

Operation Theorem • 81

4.6 Change position or speed on the fly

The PPCI7443 provides powerful position or speed changing function while
axis is moving. Changing speed/position on the fly means that the target
speed/position can be altered after the motion started. Yet, these functions
are not unlimited. Please study carefully all constrains before implement on-
the-fly function.

4.6.1 Change speed on the fly

The change speed on the fly function is applicable on single axis motion
only. Both velocity mode motion and position mode motion is applicable.
The graph above shows the basic operating theory.

The following functions are related to change speed on the fly function.

_7443_v_change() – change the MaxVel on the fly
_7443_cmp_v_change() –change velocity when general comparator comes into

existence
_7443_sd_stop() – slow down to stop
_7443_emg_stop() – immediately stop
_7443_fix_speed_range() – define the speed range
_7443_unfix_speed_range() – release the speed range constrain

All the first 4 functions can do the speed changing during single axis motion.
However, the _7443_sd_stop() and _7443_emg_stop() only change the
axis speed to “0”. The _7443_fix_speed_range() is necessary before any
_7443_v_change() function, and _7443_unfix_speed_range() release the
speed range constrained by _7443_fix_speed_range() .

_7443_v_change(axis, new_vel, Tacc)

The same Acc/Dec slope

Tacc

new_vel

Time

Speed

82 • Operation Theorem

The _7443_cmp_v_change() gets almost the same function as
_7443_v_change() , except that the _7443_cmp_v_change() act only when
general comparator comes into existence. Please refer to section 4.4.4 for
more detail description about general comparator.

The last 4 functions are relatively easy to understand and use. So, the
discussion will be focused on the _7443_v_change()

Work theory of _7443_v_change() :

The _7443_v_change() function is used to change the MaxVel on the fly. In
a normal motion operation, the axis starts at StrVel speed, accelerates to
MaxVel, and then keeps at MaxVel until entering deceleration region. If
user changes the MaxVel, it will force the axis to accelerate or decelerate to
a new speed in a period of time defined by user. Both Trapezoidal and S-
curve profiles are applicable. The speed changing is at constant
acceleration in Trapezoidal profile, and constant jerk in S-curve.

Speed change with S-curve

Constrains of _7443_v_change():

In single axis preset mode, there must be enough remaining pulses to reach
new velocity. If not, the _7443_v_change() will return error and keep
velocity unchanged.

For example:

A trapezoidal relative motion is applied:

_7443_start_tr_move(0,10000,0,1000,0.1,0.1).

_7443_sv_move

_7443_v_change

TaccTacc

Operation Theorem • 83

It cause axis 0 to move for 10000 pulse, and the maximum velocity is 1000
PPS.

At 5000 pulse the _7443_v_change(0,NewVel,Tacc) is applied.

Necessary remaining pulsesNewVel
(PPS)

Tacc
(Sec) Acceleration Deceleration Total

OK /
Error

5000 0.1 300 313 613 OK
5000 1 3000 3125 6125 Error
10000 0.1 550 556 1106 OK
50000 0.1 2550 2551 5101 Error

1. User must set the maximum velocity by _7443_fix_speed_range()
so that the _7443_v_change() could work correctly. If not, the
MaxVel set by _7443_v_move() or _7443_start_ta_move ()
becomes automatically the maximum velocity which
_7443_v_change() could not exceed.

2. _7443_v_change() during acceleration or deceleration period is not
suggested. Though it does work in most cases, the acceleration
and deceleration time is not guaranteed.

Example:

There are 3 speed change sensors during an absolute move for 200000
pulses. Initial maximum speed is 10000pps. Change to 25000pps if Sensor
1 is touched. Change to 50000pps if Sensor 2 is touched. Change to

max_vel max_vel

Not Suggested

max_vel

With fix_speed_range

Not Suggested

max_ vel

Without fix s peed ran ge

84 • Operation Theorem

100000pps if Sensor 3 is touched. Then the code for this application and
the resulting velocity profiles are shown below.

_7443_fix_speed_range(axis, 100000.0);
_7443_start_ta_move(axis, 200000.0, 1000, 10000, 0.02,0.01);
while(!_7443_motion_done(axis))

{
// Get Sensor’s information from other I/O card

if((Sensor1==High) && (Sensor2==Low) && (Sensor3 == Low))
_7443_v_change(axis, 25000, 0.02);
else if((Sensor1==Low) && (Sensor2==High) && (Sensor3 == Low))
_7443_v_change(axis, 50000, 0.02);
else if((Sensor1==Low) && (Sensor2==Low) && (Sensor3 == High))
_7443_v_change(axis, 100000, 0.02);

}

Where the information of three sensors are acquired from other I/O card.
And the resulting velocity profile from experiment is shown below.

Relative Function:
_7443_v_change(), _7443_sd_stop(), _7443_emg_stop(), _7443 _fix_speed_range(),
_7443_unfix_speed_range(), _7443 _get_currebt_speed()

: refer to section 6.5

Motor

Sensor 2 Sensor 3

Pos=0 Pos=200000

Moving part

Sensor 1

Operation Theorem • 85

4.6.2 Change position on the fly

When operating in single-axis absolute pre-set motion, it is possible to
change the target position during moving by function call
_7443_p_change().

Work theory of _7443_p_change() :

The _7443_p_change() is applicable on _7443_start_ta_move(), and
_7443_start_sa_move() only. It is to change the target position defined
originally by these two functions. After changing position, the axis will move
to the new target position and totally forget the original position. If the new
position is in passed path, it will cause the axis to decelerate to stop, than
reverse, as the following graph. The acceleration and deceleration rate, the
StrVel and MaxVel will keep the same as original setting.

Speed

Position

Original

New

_7443_P_change()

_7443_start_ta_move()
Original
End Point

New
End Point

86 • Operation Theorem

Constrains of _7443_p_change() :

1. _7443_p_change() is only applicable on single-axis absolute pre-set
motion, ie, _7443_start_ta_move() , and _7443_start_sa_move() only

2. Position change on deceleration period is not allowed.

3. There must be enough distance between new target position and current
position where _7443_p_change() is executed. Because, PPCI7443
needs enough space to finish deceleration.

For example:

A trapezoidal absolute motion is applied:

_7443_start_ta_move(0,10000,0,1000,0.5,1).

It cause axis 0 to move to pulse 10000 position, and the maximum velocity
is 1000 PPS. The necessary number of pulses to decelerate is 0.5*1000*1
= 500.

At position “CurrentPos” the _7443_p_change(0, NewPos) is applied.

Relative Function:
_7443_p_change() : refer to section 6.6

NewPos CurrentPos OK / Error Note

5000 4000 OK

5000 4501 Error
5000 5000 Error

5000 5499 Error

5000 6000 OK Go back

5000 9499 OK Go back

5000 9500 Error

5000 9999 Error

Operation Theorem • 87

4.7 Position compare and Latch

The PPCI7443 provides position compare function in axis 0 and 1,and
position latch function in axis 2 and 3. The compare function is to “output a
trigger pulse when counter reached the value set by user”. CMP1 (Axis0)
and CMP2 (Axis 1) are used for compare trigger. The latch function is to
capture values of all 4 counters (refer to section 4.4) at that instant latch
signal activate. LTC3 (Axis 2) and LTC4 (Axis 3) are used to receive latch
pulse.

4.7.1 Comparators of PPCI7443

There are 5 comparators in every axis of PPCI7443. Each comparator gets
its unique functionality. Here is the table of description:

Note: Not all the 5 comparator get the ability to trigger output pulse via CMP.
It is only the comparator 5.

The compare 1 & 2 are for soft limit, please refer to section 4.9. The
comparator 3 is used to compare with position error counter. It is very useful
for detecting if a stepping motor lost pulses. To enable/disable the step-
losing detection and set the allowed tolerance:
_7443_set_error_counter_check()

The PPCI7443 will generate an interrupt if step-losing is enabled and
occurred.

The comparator 4 is a general-purposed comparator, which will generate
interrupt (default reaction) if the comparing condition comes into existence.
The comparing source counter can be any counter. The compared value,
source counter, comparing method and reaction are set by software
function call _7443_set_general _comparator() .

Compare Source Description Function Related
Comparator 1 Command

position counter
Soft Limit (+)
(Refer to section
4.9)

Comparator 2 Command
position counter

Soft Limit (-)
(Refer to section
4.9)

_7443_set_softlimit
_7443_enable_softlimit
_7443_diable_softlimit

Comparator 3 Position error
counter

Step-losing
detection

_7443_error_counter_check

Comparator 4 Any counters General- purposed _7443_set_general_comparator

Comparator 5
(Only Axis 0
& 1)

Feedback position
counter

Position compare
function (Trigger)

_7443_set_trigger_comparator
_7443_build_compare_function
_7443_build_compare_table
_7443_set_auto_compare

88 • Operation Theorem

4.7.2 Position compare

The position compare function is performed by the 5th comparator, whose
comparing source is the feedback position counter. Only the first 2 axes (0
and 1) can do position compare function. The position compare function is
to trigger a pulse output via CMP, when the comparing condition comes into
existence.

The comparing condition consists of 2 parts, the first is the value to be
compared, and the second is comparing mode. Comparing mode can be
“>“ , “=“ or “<“. The easiest way to use position comparison function is to
call the software function:

_7443_set_trigger_comparator(AxisNo, Method, Data)

The second parameter “Method” indicates the comparing method, while the
third “Data” is for value to be compared. In continuous comparing, this data
will be ignored automatically since the compare data will be build by other
functions.

Continuously compare

For user who wants to compare multiple data continuously, functions of
building comparison tables is also provided as shown in the following

1. _7443_build_comp_function(AxisNo, Start, End, Interval, device)
2. _7443_build_comp_table(AxisNo, tableArray, Size, device)
3. _7443_set_auto_compare(AxisNo, SelectSource)

Note: 1. Please turn off all interrupt function, when these function is
running

The first function is to build a compare list by start point, end point and
constant interval. The second is to build an arbitrary comparing table (data
array). The third function is a comparing source selection function. Please
put a value 1 in this parameter for using FIFO mode. Once it is set, the
compare machenism will start. Users can check current value which is
going to be compared by _7443_check_compare_data():

Operation Theorem • 89

Here is an example of using continuous position comparison functions.

In this application the table is controlled by the motion command and the
CCD Camera is controlled by the position comparison output of
PPCI7443. The image of moving object can be got in this way easily.

Working Spec: 34000 triggering points per stroke, trigger speed is 6000
pts/sec)

Program Settings: �

��

�

� Table starts moving from 0 to 36000
� Compare points are on 1001 35000, total 34000 pts, points to points

interval=1pulse
� Moving Speed is 6000 pps
� Compare condition is “=“Program codes �

��

�

_7443_set_trigger_comparator(0, 1, 1, 1001);
_7443_build_compare_function(0, 1001, 35000, 1, 1);
_7443_set_auto_compare(0, 1);
_7443_start_tr_move(0, 36000, 0, 6000, 0.01, 0.01);

Monitoring or Check the current compare data:
_7443_check_compare_data(0, 5, *CurrentData);

Users can use this function to check if the auto-trigger is running.

t

v

1 2 3 4 5 6

CCD
Camera

t

v

1 2 3 4 5 6

CCD
Camera

Trigger Output

90 • Operation Theorem

Pulse Width 30us

Period=166us

Results:

The compare machenism is as following:

The value block in the figure means a position which is going to be
compared and users can use _7443_check_compare_data() to
check it. Notice that at the final compared point, it will still load a
“after-final” point into the “value” block. Please fill a dummy point into
the compare table array at the final position and this value must be
far away from table’s stroke.
If using _build_compare_function() , it will load a dummy “after-final”
point automatically. This value is (End point + Interval x Total counts)

Comparator

Value

4K 32bits
FIFO

Host
RAM

Data transfer
interrupt

Reload
Signal

Trigger Pulse 30us
width

3584 points background transfer
Users needn’t to handle this

Operation Theorem • 91

x moving ratio.

Relative Function:
_7443_set_trigger_comparator(), _7443_build_comp_function(),
_7443_build_comp_table(), _7443_set_auto_compare(),
_7443_check_compare_data(),_7443_set_trigger_type ()

: refer to section 6.16

4.7.3 Position Latch

Position latch is a contrary function to position compare. The position
compare function is to trigger a pulse output via CMP, when the comparing
condition comes into existence. Yet, the position latch function is to receive
pulse input via LTC, and then capture all counters’ (refer to section 4.4)
data in that instant. The latency between occurring of latch signal and
finishing of position capturing is extremely short, for the latching procedure
is made by hardware. Only the last 2 axes (2 and 3) can do position latch
function. LTC3 (Axis 2) and LTC4 (Axis 3) are used to receive latch pulse.

To set the latch logic: _7443_set_ltc_logic().

To get the latched values of counters: _7443_get_latch_data(AxisNo,
CntNo, Pos). The second parameter “CntNo” is used to indicate the
counter of which the latched data will be read. And, it can latched even
except for the LTC pin by the _7443_set_enable_inp() command.

Relative Function:
_7443_set_ltc_logic(),_7443_get_latch_data() : refer to section 6.16

92 • Operation Theorem

4.8 Hardware backlash compensator and

vibration suppression

Whenever direction change is occurred, The PPCI7443 outputs backlash
corrective pulses before sending commands. The function
_7443_backlash_comp() is used to set the pulse number.

In order to minimize vibration when a motor stops. The PPCI7443 can
output single pulse for negative direction and then single pulse for positive
direction right after completion of command movement. Refer to following
figure, the function _7443_suppress_vibration() is used to set the T1 & T2.

Relative Function:
_7443_backlash_comp(),_7443_suppress_vibration() : refer to section 6.6

(+) Direction

(-) Direction

Final Pulse

T1 T2

T1/2 T2/2

Operation Theorem • 93

4.9 Software Limit Function

The PPCI7443 provides 2 software limits for each axis. The soft limit is
extremely useful to protect user’s mechanical system, for it works as a
physical limit switch, when setting correctly.

The soft limit is built on comparator 1 and 2 (please refer to section 4.7.1),
and the comparing source is command position counter. The working theory
is that pre-setting limits value on comparator 1 and 2, then, when the
command position counter reached the limit value, the PPCI7443 reacts as
the physical limit switch is touched. Thus, it stops immediately or
decelerates to stop pulse output.

To set the soft limit: _7443_set_softlimit();
To enable soft limit: _7443_enable _softlimit();
To disable soft limit: _7443_diable _softlimit()

Note: The soft limit is applied to command position , but not the feedback
position (please refer to 4.4). In case the moving ratio is not equal to “1”, it
is necessary for user to manually calculate the corresponding command
position where the soft limit is, when using _7443_set_softlimit() .

Relative Function:
_7443_set_softlimit(),_7443_enable_softlimit(), _7443_diable_softlimit()

: refer to section 6.16

94 • Operation Theorem

4.10 Interrupt Control

The PPCI7443 motion controller can generate INT signal to host PC. The
parameter “intFlag ” of software function call _7443_int_control(), can
enable/disable the interrupt service.

After a interrupt occurred, the function _7443_get_int_status() is used to
receive the INT status, which contains information about INT signal. The int
status of PPCI7443 is composed of two independent parts:
error_int_status and event_int_status . The event_int_status recodes the
motion and comparator event under normal operation , and this kind of INT
status can be masked by _7443_set_int_factor() . The error_int_status is
for abnormal stop of PPCI7443. For example: EL, ALM …etc, these kind of
INT can not be masked. The following is the definition of these two
int_status:

event_int_status : can be masked by function call _7443_int_ factor()

Bit Description

0 Normal Stop

1 Next command Starts

2 Command pre-register 2 is empty

3 (Reserved)

4 Acceleration Start

5 Acceleration End

6 Deceleration Start

7 Deceleration End

8 (Reserved)

9 (Reserved)

10 Step-losing occur

11 General Comparator compared

12 Compared triggered for axis 0,1

13 (Reserved)

14 Counter Latched for axis2,3

15 ORG Input and Latched

16 SD on

17 (Reserved)

18 (Reserved)

19 CSTA, Sync. Start on

20~31 (Reserved)

Operation Theorem • 95

Use Events to deal with Interrupt under Windows

In order to detect the interrupt signal from PPCI7443 under Windows. Users
must create events array first. Then use functions provided by PPCI7443 to
get the interrupt status. The sample program is as following:

Steps:
1. Define a Global Value to deal with interrupt events. Each event is

linked to one axis
HANDLE hEvent[4];

2. Enable interrupt event service and setup interrupt factors and enable
interrupt channel
_7443_int_enable(0,hEvent);
_7443_set_int_factor(0,0x01); // Normal Stop interrupt
_7443_int_control(0,1);�

error_int_status : can not be masked if interrupt service is activated.

Bit Description

0 +Soft Limit on and stop

1 -Soft Limit on and stop

2 (Reserved)

3 General Comparator on and Stop

4 (Reserved)

5 +End Limit on and stop

6 -End Limit on and stop

7 ALM happen and stop

8 CSTP, Sync. Stop on and stop

9 CEMG, Emergency on and stop

10 SD on and slow down to stop

11 (Reserved)

12 Interpolation Error and stop

13 Other Axis stop on Interpolation

14 Pulser input buffer overflow and stop

15 Interpolation counter overflow

16 Encoder input signal error

17 Pulser input signal error

18~31 (Reserved)

96 • Operation Theorem

3. Start moving command
_7443_start_tr_move(0,12000,0,10000,0.1,0.1);

4. Wait axis 0 interrupt event

STS=WaitForSingleObject(hEvent[0],15000);
ResetEvent(hEvent[0]);

if(STS==WAIT_OBJECT_0)
{

_7443_get_int_status(0, &error, &event);
if(event == 0x01) …… ; // Success

}
else if(STS==WAIT_TIME_OUT)
{

// Time out, fail
}

PPCI7443 Interrupt Service Routine (ISR) with DOS

A DOS function library is equipped with PPCI7443 for users to develop
applications under DOS environment. This library also provides some
functions for users to work with ISR. It is highly recommended to write
programs according to the following example for applications should work
with ISR. Since PCI-bus has the ability to do IRQ sharing when multiple
PPCI7443 are applied, each PPCI7443 should have a corresponding ISR.
For users who use the library we provide, the names of ISR are fixed, such
as: _7443_isr0(void), _7443_isr1(void)…etc. The sample program are
described as below. It is assumed that two PPCI7443 are plugged on the
slot , axis 1 and axis5 are asked to work with ISR.:

// header file declare
#include “pci_7443.h”

void main(void) {
I16 TotalCard,i; // Initialize cards
_7443_initial(&TotalCard);
if(TotalCard == 0) exit(1);

_7443_set_int_factor(0,0x1); // Set int factor
_7443_int_control(0,1); // enable int service

:
: // Insert User’s Code in Main

Operation Theorem • 97

: //

_7443_int_control(0,0); // disable int service

_7443_close(); // Close PPCI7443
}

void interrupt _7443_isr0(void) {
U16 irq_status; // Declaration
U16 int_type;
I16 i;
U32 i_int_status1[4],i_int_status2[4];

disable(); // Stop all int service
_7443_get_irq_status(0, &irq_status); // Check if this card’s int
if(irq_status) {

for(i=0;i<4;i++) _7443_enter_isr(i); // enter isr
for(i=0;i<4;i++)
{

_7443_get_int_type(i, &int_type); // check int type
if(int_type & 0x1)

{
_7443_get_error_int(i, &int_status1[i]);

// Insert User’s Code in Error INT
//
//

}
if(int_type & 0x2)
{
_7443_get_event_int(i, &int_status2[i]);

// Insert User’s Code in Event INT
//
//
}

}
// end of for every axis in card0

for(i=0;i<4;i++) _7443_leave_isr(i);
}
else _7443_not_my_irq(0);

// Send EOI
_OUTPORTB(0x20, 0x20);

98 • Operation Theorem

_OUTPORTB(0xA0, 0x20);
enable(); // allow int service

}

void interrupt _7443_isr1(void){}
void interrupt _7443_isr2(void){}
void interrupt _7443_isr3(void){}
void interrupt _7443_isr4(void){}
void interrupt _7443_isr5(void){}
void interrupt _7443_isr6(void){}
void interrupt _7443_isr7(void){}
void interrupt _7443_isr8(void){}
void interrupt _7443_isr9(void){}
void interrupt _7443_isra(void){}
void interrupt _7443_isrb(void){}

So with the sample, user can get the interrupt signal about each axis in the
motion control system.

Relative Function:
_7443_int_control(), _7443_set_int_factor(), _7443_int_enable(),
_7443_int_disable(), _7443_get_int_status(), _7443_link_interrupt(),
_7443_get_int_type(), _7443_enter_isr(), _7443_leave_isr()
_7443_get_event_int(), _7443_get_error_int(), _7443_get_irq_status()
_7443_not_my_irq(), _7443_isr0~9, a, b

: refer to section 6.14

Operation Theorem • 99

4.11 Idling control

In this mode, when acceleration or deceleration begins, some idle pulses
will be output after the starting velocity (StrVer). It begins to accelerate or
decelerate after outputting these pulses. The pulse number setting on
idl_pulse parameter of _7443_set_idle_pulse() command define the delay
time of acceleration. Even when this function is used on position mode, the
total moving distance will remain unchanged. The timing diagram of Idle
pulse setting and acceleration begins is as following:

Relative Function:
_7443_set_idle_pulse(): refer to section 6.6

BSY

OUT
1 2 3

FUP

From the 0th pulse, acceleration start .

BSY

OUT
1 2 3

FUP

From the 3th pulse, acceleration start .

The period of the FL speed

N=0 and N=1

N=3

PPCI7443 Utility • 101

5

PPCI7443 Utility

After installing all the hardware properly according to Chapter 2 and 3, it is
necessary to correctly configure cards and double check before running.
This chapter gives guidelines for establishing a control system and
manually exercising the PPCI7443 cards to verify correct operation.
PPCI7443 Utility provides a simple yet powerful means to setup, configure,
test and debug motion control system that uses PPCI7443 cards.

Note that PPCI7443 Utility is available only for Windows 95/98 or Windows
NT/2000/XP with the screen resolution higher than 800x600 environment
and can not run on DOS.

102 • PPCI7443 Utility

5.1 Execute PPCI7443 Utility

After installing the software driver of PPCI7443 on Windows
95/98/NT/2000/XP, the PPCI7443 Utility program can be find in <chosen
path >/ PPCI7443/Utility. To execute it, double click it or use desktop “Start”
� “Program files”� “PPCI7443”� “PPCI7443 Utility”.

5.2 About PPCI7443 Utility

Before Running PPCI7443 Utility for PPCI7443, the following issues should
be kept in mind.

1. PPCI7443 Utility is a program written by VB 5.0, and is available only for
Windows with the screen resolution higher than 800x600 environment. It
can not run on DOS.

2. PPCI7443 Utility allows users to save settings or configurations for
PPCI7443 cards and those saved configurations will be loaded
automatically when PPCI7443 Utility is executed later again. The two files
7443.ini and 7443MC.ini in windows root directory are used to save all
settings and configurations.

3. To duplicate configurations from one system to another system, just copy
7443.ini and 7443MC.ini into windows root directory.

4. If users want to use the configurations set by PPCI7443 Utility, the DLL
function call _7443_config_from_file() is helpful. After calling this
function in user’s program, user can use those PPCI7443 cards as the
same configuration as set by PPCI7443 Utility.

PPCI7443 Utility • 103

5.3 PPCI7443 Utility Form Introducing

5.3.1 Main form

Te main form appears after running PPCI7443 Utility. It is used to:

5.3.2 Interface I/O Configuration Form

In this form user can set the configuration of EL, ORG, EZ, ERC, ALM, INP,
SD, and LTC.

� Select operating card and axis

� Go to operation forms (refer to
section 5.3.4)

� Go to Interface I/O configuration
form(refer to section 5.3.2)

� Go to Pulse & INT configuration
form(refer to section 5.3.3)

� Show card information:
The related function is
_7443_get_base_addr(),
_7443_get_irq_channel()

� Leave PPCI7443 Utility

1

2

3

4

5

6

7

8

9

104 • PPCI7443 Utility

1. ALM Logic and Response mode: Select logic and response mode of
ALM signal. The related function call is _7443_set_alm().

2. INP Logic and Enable/Disable selection: Select logic and Enable/
Disable the INP signal. The related function call is _7443_set_inp()

3. ERC Logic and Active timing: Select the Logic and Active timing of
ERC signal. The related function call is _7443_set_erc().

4. EL Response mode: Select the response mode of EL signal. The
related function call is _7443_set_el().

5. ORG Logic: Select the logic of ORG signal. The related function call is
_7443_set_home_config().

6. EZ Logic: Select the logic of EZ signal. The related function call is
_7443_set_home_config().

7. SD Configuration: Configuration of SD signal. The related function call
is _7443_set_sd().

8. LTC Logic: Select the logic of LTC signal. The related function call is
_7443_set_ltc_logic().

9. Buttons:
� Next Axis: Click this button to change operating axis.
� Save Config: Click this button to save current configuration to 7443.ini.
� Operate: Go to operate form, refer to section 5.3.4
� Config Pulse & INT: Go to Pulse IO & Interrupt Configuration Form,

refer to section 5.3.3
� Back: Click this button to go back main form.

5.3.3 Pulse IO & Interrupt Configuration Form

In this form user can set the configuration of pulse input/output, move ration,
and INT factor.

1

2

3

4

PPCI7443 Utility • 105

1. Pulse Output Mode: Select the output mode of pulse signal (OUT/ DIR).
The related function call is _7443_set_pls_outmode().

2. Pulse Input : Set the configurations of Pulse input signal(EA/EB). The
related function call is _7443_set_pls_iptmode(),
_7443_set_feedback_src().
Move Ratio: Set the move ratio (feedback / pulse command)for current
target axis. The value should not be ‘0’. The related function call is
_7443_set_move_ratio().

3. INT Factor: Select factors to initiate the event int. The related function
call is _7443_set_int_factor().

4. Buttons :
� Next Axis: Click this button to change operating axis.
� Save Config: Click this button to save current configuration to 7443.ini.
� Operate: Go to operate form, refer to section 5.3.4
� Config Interface I/O: Go to Interface I/O Configuration Form, refer to

section 5.3.2
� Back: Click this button to go back main form.

5.3.4 Operate form:
In this form user can learn and manipulate the single axis motion

functions provide by PPCI7443, including velocity mode motion, preset
relative/absolute motion, manual pulser move and home return.

1

2
3

4

5
6

14

15

7

8
9 10

11

12

13

16

18

19

20

17

106 • PPCI7443 Utility

1.Position:
�Command: display value of command counter. The related function is

_7443_get_command().
� Feedback: display value of feedback position counter. The related

function is _7443_get_position()
� Pos Error: display value of position error counter. The related function

is _7443_get_error_counter().
� Target Pos: display value of target position recorder. The related

function is _7443_get_target_pos().
2. Position Reset: click this button will set all position counter to specified

value. The related functions are:
_7443_set_position(),
_7443_set_command(),
_7443_reset_error_counter()
_7443_reset_target_pos()

3. Motion Status: display return value of _7443_motion_done function. The
related function is _7443_motion_done().

4. INT Status:
Event : display of event_int_status in Hex value. The related function is

_7443_get_int_status().
Error : display of error_int_status in Hex value. The related function is

_7443_get_int_status().
Count : total count of interrupt.
Clear Button: click this button will clear all INT status and counter to ‘0’.

5. Velocity: The absolute value of velocity in unit of PPS. The related
function is _7443_get_current_speed().

6. Show Velocity Curve Button: Clicking this button will open a form
showing velocity vs. time curve. In this curve, every 100ms a new
velocity data will be added in. To close it, click this button again. To
clear data, click on the curve.

PPCI7443 Utility • 107

7. Operation Mode: Select operation mode.
� Absolute Mode: “Position1” and “position2” will be used as absolution

target position for motion. The related function is
_7443_start_ta_move(), _7443_start_sa_move().

� Relative Mode: “Distance will” be used as relative displacement for
motion. The related function is _7443_start_tr_move(),
_7443_start_sr_move().

� Cont. Move: Velocity motion mode. The related function is
_7443_tv_move(), _7443_start_sv_move().

� Manual Pulser Move: Manual Pulser motion. Click this button will
invoke the manual pulse configuration window.

� Home Mode: Home return motion. Click this button will invoke the
home move configuration form. The related function is
_7443_set_home_config().

8. Position: Set the absolute position for “Absolute Mode”. It is only
effective when “Absolute Mode” is selected.

9. Distance: Set the relative distance for “Relative Mode”. It is only effective
when “Relative Mode” is selected.

To Set the Pulse
input mode

To Set the Pulse
input logic

ERC Output: Select if the
ERC signal will be sent
or not when home move
completes.

EZ Count: Set the EZ
count number, which is
effective on certain home
return modes.

Mode: Select the home
return mode. There are
13 modes available.

Figure: The figure showed
here explains the action
of individual home mode.

Close: Click this button
close this form.

108 • PPCI7443 Utility

10. Repeat Mode: When “On” is selected, the motion will go in repeat
mode(forward �� backward or position1 �� position2). It is only
effective when “Relative Mode” or “Absolute Mode” is selected.

11. Vel. Profile: Select the velocity profile. Both Trapezoidal and S-curve
are available for “Absolute Mode”, “Relative Mode” and “Cont. Move”.

12. Motion Parameters: Set the parameters for single axis motion. These
parameter is meaningless if “Manual Pulser Move” is selected, since
the velocity and moving distance is decided by pulse input.
� Start Velocity: Set the start velocity of motion in unit of PPS. In

“Absolute Mode” or “Relative Mode”, only the value is effective.
ie, -100.0 is the same as 100.0. In “Cont. Move”, both the value
and sing is effective. –100.0 means 100.0 in minus direction.

� Maximum Velocity: Set the maximum velocity of motion in unit of
PPS. In “Absolute Mode” or “Relative Mode”, only the value is
effective. ie, -5000.0 is the same as 5000.0. In “Cont. Move”,
both the value and sing is effective. –5000.0 means 5000.0 in
minus direction.

� Accel. Time :Set the acceleration time in unit of second.
� Decel. Time :Set the deceleration time in unit of second.
� SVacc : Set the S-curve range during acceleration in unit of PPS.
� SVdec : Set the S-curve range during deceleration in unit of PPS.
� Move Delay : This setting is effective only when repeat mode is set

“On”. It will cause PPCI7443 to delay specified time before it
continue next motion.

13. Speed Range: Set the max speed of motion. If “Not Fix” is selected,
the “Maximum Speed” will automatically become the maximum speed
range, which can not be exceeded by on-the-fly velocity change.

14. Servo On: Set the SVON signal output status. The related function is
_7443_set_servo().

15. Play Key:
Left play button: Click this button will cause PPCI7443 start to outlet

pulses according to previous setting.
In “Absolute Mode”, it cause axis move to position1.
In “Relative Mode”, it cause axis move forward.
In “Cont. Move”, it cause axis start to move according to the

velocity setting.
In “Manual Pulser Move”, it cause axis get into pulser move. The

speed limit is the value set by “Maximum Velocity”
Right play button: Click this button will cause PPCI7443 start to outlet

pulses according to previous setting.
In “Absolute Mode”, it cause axis move to position2.
In “Relative Mode”, it cause axis move backward.
In “Cont. Move”, it cause axis start to move according to the

velocity setting, but the other direction.
In “Manual Pulser Move”, it cause axis get into pulser move. The

speed limit is the value set by “Maximum Velocity”

PPCI7443 Utility • 109

16. Change Position On The Fly Button: When this button is enabled,
users can change the target position of current motion. The new
position must be defined in “Position2”. The related function is
_7443_p_change().

17. Change Velocity On The Fly Button: When this button is enabled,
users can change the velocity of current motion. The new velocity must
be defined in “Maximum Velocity”. The related function is
_7443_v_change()

18. Stop Button: Click this button will cause PPCI7443 to decelerate to
stop. The deceleration time is defined in “Decel. Time”. The related
function is _7443_sd_stop().

19. I/O Status: The status of motion I/O. Light-On means Active, while
Light-Off indicates inactive. The related function is
_7443_get_io_status().

20. Buttons :
� Next Axis: Click this button to change operating axis.
� Save Config: Click this button to save current configuration to 7443.ini.
� Config Pulse & INT: Go to Pulse IO & Interrupt Configuration Form,

refer to section 5.3.3
� Config Interface I/O: Go to Interface I/O Configuration Form, refer to

section 5.3.2
� Back: Click this button to go back main form.

Function Library • 111

6

Function Library

This chapter describes the supporting software for PPCI7443 cards. User
can use these functions to develop application program in C or Visual Basic
or C++ language. If Delphi is used as programming environment, it is
necessary to transform the header file,7443.h, manually.

6.1 List of Functions

Initialization Section 6.3

Pulse Input/Output Configuration Section 6.4

Function Name Description
_7443_initial Software initialization
_7443_close Software Close
_7443_get_base_addr Get base address of PPCI7443
_7443_get_irq_channel Get the PPCI7443 card’s IRQ number
_7443_delay_time Delay execution of program for specified time in unit of ms.
_7443_config_from_file Configure PPCI7443 cards according to configuration file ie.

7443.ini, which is created by PPCI7443 Utility.
_7443_version_info Check the hardware and software version

Function Name Description
_7443_set_pls_outmode Set pulse command output mode
_7443_set_pls_iptmode Set encoder input mode
_7443_set_feedback_src Set counter input source

112 • Function Library

Velocity mode motion Section 6.5

Single Axis Position Mode Section 6.6

Function Name Description
_7443_tv_move Accelerate an axis to a constant velocity with trapezoidal

profile
_7443_sv_move Accelerate an axis to a constant velocity with S-curve profile
_7443_v_change Change speed on the fly
_7443_sd_stop Decelerate to stop
_7443_emg_stop Immediately stop
_7443_fix_speed_range Define the speed range
_7443_unfix_speed_range Release the speed range constrain
_7443_get_current_speed Get current speed
_7443_verify_speed Check the min/max acceleration time under max speed

Function Name Description
_7443_start_tr_move Begin a relative trapezoidal profile move
_7443_start_ta_move Begin an absolute trapezoidal profile move
_7443_start_sr_move Begin a relative S-curve profile move
_7443_start_sa_move Begin an absolute S-curve profile move
_7443_set_move_ratio Set the ratio of command pulse and feedback pulse.
_7443_p_change Change position on the fly
_7443_set_pcs_logic Set the logic of PCS (Position Change Signal)
_7443_set_sd_pin Set SD/PCS pin
_7443_backlash_comp Set backlash corrective pulse for compensation
_7443_suppress_vibration Set vibration suppressing timing
_7443_set_idle_pulse Set suppress vibration idle pulse counts

Function Library • 113

Linear Interpolated Motion Section 6.7

Function Name Description
_7443_start_tr_move_xy Begin a relative 2-axis linear interpolation for X & Y, with

trapezoidal profile
_7443_start_ta_move_xy Begin a absolute 2-axis linear interpolation for X & Y, with

trapezoidal profile
_7443_start_sr_move_xy Begin a relative 2-axis linear interpolation for X & Y, with

S-curve profile
_7443_start_sa_move_xy Begin a absolute 2-axis linear interpolation for X & Y, with

S-curve profile
_7443_start_tr_move_zu Begin a relative 2-axis linear interpolation for Z & U, with

trapezoidal profile
_7443_start_ta_move_zu Begin a absolute 2-axis linear interpolation for Z & U, with

trapezoidal profile
_7443_start_sr_move_zu Begin a relative 2-axis linear interpolation for Z & U, with

S-curve profile
_7443_start_sa_move_zu Begin a absolute 2-axis linear interpolation for Z & U, with

S-curve profile
_7443_start_tr_line2 Begin a relative 2-axis linear interpolation for any 2 axes,

with trapezoidal profile
_7443_start_sr_line2 Begin a relative 2-axis linear interpolation for any 2 axes,

with S-curve profile
_7443_start_ta_line2 Begin a absolute 2-axis linear interpolation for any 2 axes,

with trapezoidal profile
_7443_start_sa_line2 Begin a absolute 2-axis linear interpolation for any 2 axes,

with S-curve profile
_7443_start_tr_line3 Begin a relative 3-axis linear interpolation with trapezoidal

profile
_7443_start_sr_line3 Begin a relative 3-axis linear interpolation with S-curve

profile

_7443_start_ta_line3 Begin a absolute 3-axis linear interpolation with
trapezoidal profile

_7443_start_sa_line3 Begin a absolute 3-axis linear interpolation with S-curve
profile,

_7443_start_tr_line4 Begin a relative 4-axis linear interpolation with trapezoidal
profile

_7443_start_sr_line4 Begin a relative 4-axis linear interpolation with S-curve
profile

_7443_start_ta_line4 Begin a absolute 4-axis linear interpolation with
trapezoidal profile

_7443_start_sa_line4 Begin a absolute 4-axis linear interpolation with S-curve
profile,

_7443_set_line_move_mode Set continuous line interpolation mode
_7443_set_axis_option Choose the interpolation speed mode

114 • Function Library

Circular Interpolation Motion Section 6.8

Home Return Mode Section 6.9

Function Name Description
_7443_start_a_arc_xy Begin a absolute circular interpolation for X & Y
_7443_start_r_arc_xy Begin a relative circular interpolation for X & Y
_7443_start_a_arc_zu Begin a absolute circular interpolation for Z & U
_7443_start_r_arc_zu Begin a relative circular interpolation for Z & U
_7443_start_a_arc2 Begin a absolute circular interpolation for any 2 of the 4

axes
_7443_start_r_arc2 Begin a relative circular interpolation for any 2 of the 4

axes
_7443_start_tr_arc_xyu Begin a trapezoidal relative arc with U axis sync.
_7443_start_ta_arc_xyu Begin a trapezoidal absolute arc with U axis sync.
_7443_start_sr_arc_xyu Begin a s-curve relative arc with U axis sync
_7443_start_sa_arc_xyu Begin a s-curve sbsolute arc with U axis sync
_7443_start_tr_arc_xy Begin a trapezoidal relative circular interpolation for X & Y

_7443_start_ta_arc_xy Begin a trapezoidal abslollute circular interpolation for X &
Y

_7443_start_sr_arc_xy Begin a s-curve relative circular interpolation for X & Y
_7443_start_sa_arc_xy Begin a s-curve absolute circular interpolation for X & Y
_7443_start_tr_arc_zu Begin a trapezoidal relative circular interpolation for Z & U

_7443_start_ta_arc_zu Begin a trapezoidal ablsolute circular interpolation for Z &
U

_7443_start_sr_arc_zu Begin a s-curve relative circular interpolation for Z & U
_7443_start_sa_arc_zu Begin a s-curve absolute circular interpolation for Z & U

_7443_start_tr_arc2 Begin a trapezoidal relative circular interpolation for any 2
of the 4 axes

_7443_start_ta_arc2 Begin a trapezoidal absolute circular interpolation for any 2
of the 4 axes

_7443_start_sr_arc2 Begin a s-curve relative circular interpolation for any 2 of
the 4 axes

_7443_start_sa_arc2 Begin a s-curve absolute circular interpolation for any 2 of
the 4 axes

Function Name Description
_7443_set_home_config Set the home/index logic configuration
_7443_home_move Begin a home return action
_7443_escape_home Escape Home Function
_7443_home_search Auto-Search Home Switch (Without ORGOffset)
_7443_auto_home_search Auto-Search Home Switch (With ORGOffset)

Function Library • 115

Manual Pulser Motion Section 6.10

Motion Status Section 6.11

Motion Interface I/O Section 6.12

Motion I/O Monitoring Section 6.13

Function Name Description
_7443_set_pulser_iptmode Set pulser input mode
_7443_pulser_vmove Start pulser v move
_7443_pulser_pmove Start pulser p move
_7443_pulser_home_move Start pulser home move
_7443_set_pulser_ratio Set manual pulser ratio for actual output pulse rate
_7443_pulser_r_line2 Pulser mode for 2-axis linear interpolation
_7443_pulser_r_arc2 Pulser mode for 2-axis arc interpolation

Function Name Description
_7443_motion_done Return the motion status

Function Name Description

_7443_set_alm Set alarm logic and operating mode
_7443_set_inp Set INP logic and operating mode
_7443_set_erc Set ERC logic and timing
_7443_set_servo Set state of general purpose output pin
_7443_set_sd Set SD logic and operating mode
_7443_set_el Set EL logic and operating mode

Function Name Description

_7443_get_io_status Get all the motion I/O status of PPCI7443

116 • Function Library

Interrupt Control Section 6.14

Position Control and Counters Section 6.15

Function Name Description
_7443_int_control Enable/Disable INT service
_7443_int_enable Enable event (For Window only)
_7443_int_disable Disable event (For Window only)
_7443_get_int_status Get INT Status (For Window only)
_7443_link_interrupt Set link to interrupt call back function (For Window only)
_7443_set_int_factor Set INT factor
_7443_get_int_type Get INT type (For DOS only)
_7443_enter_isr Enter interrupt service routine (For DOS only)
_7443_leave_isr Leave interrupt service routine (For DOS only)
_7443_get_event_int Get event status (For DOS only)
_7443_get_error_int Get error status (For DOS only)
_7443_get_irq_status Get IRQ status (For DOS only)
_7443_not_my_irq Not My IRQ (For DOS only)
_7443_isr0~9, a, b Interrupt service routine (For DOS only)
_7443_set_axis_stop_int Enable axis stop int
_7443_mask_axis_stop_int Mask axis stop int

Function Name Description

_7443_get_position Get the value of feedback position counter
_7443_set_position Set the feedback position counter
_7443_get_command Get the value of command position counter
_7443_set_command Set the command position counter
_7443_get_error_counter Get the value of position error counter
_7443_reset_error_counter Reset the position error counter
_7443_get_general_counter Get the value of general counter
_7443_set_general_counter Set the general counter
_7443_get_target_pos Get the value of target position recorder
_7443_reset_target_pos Reset target position recorder
_7443_get_rest_command Get remain pulse till end of motion
_7443_check_rdp Check the ramping down point data

Function Library • 117

Position Compare and Latch Section 6.16

Continuous motion Section 6.17

Multiple Axes Simultaneous Operation Section 6.18

General-purposed TTL Output Section 6.19

Function Name Description

_7443_set_ltc_logic Set the LTC logic
_7443_get_latch_data Get latched counter data
_7443_set_soft_limit Set soft limit
_7443_enable_soft_limit Enable soft limit function
_7443_disable_soft_limit Disable soft limit function
_7443_set_error_counter_check Step-losing detection
_7443_set_general_comparator Set general-purposed comparator
_7443_set_trigger_comparator Set Trigger comparator
_7443_set_trigger_type Set the trigger output type
_7443_check_compare_data Check current comparator data
_7443_check_compare_status Check current comparator status
_7443_set_auto_compare Set comparing data source for auto loading
_7443_build_compare_function Build compare data via constant interval
_7443_build_compare_table Build compare data via compare table
_7443_cmp_v_change Speed change by comparator
_7443_set_enable_inp Set latch signal

Function Name Description

_7443_set_continuous_move Enable continuous motion for absolute motion
_7443_check_continuous_buffer Check if the buffer is empty

Function Name Description
_7443_set_tr_move_all Multi-axis simultaneous operation setup.
_7443_set_ta_move_all Multi-axis simultaneous operation setup.
_7443_set_sr_move_all Multi-axis simultaneous operation setup.
_7443_set_sa_move_all Multi-axis simultaneous operation setup.
_7443_start_move_all Begin a multi-axis trapezoidal profile motion
_7443_stop_move_all Simultaneously stop Multi-axis motion
_7443_set_sync_option Optional sync options
_7443_set_sync_stop_mode Set the stop mode when CSTOP signal is ON

Function Name Description
_7443_d_output Digital Output
_7443_get_dio_status Get DO status

118 • Function Library

6.2 C/C++ Programming Library

This section gives the details of all the functions. The function prototypes
and some common data types are decelerated in PPCI7443.H. These data
types are used by PPCI7443 library. We suggest you to use these data
types in your application programs. The following table shows the data type
names and their range.

Type Name Description Range
U8 8-bit ASCII character 0 to 255
I16 16-bit signed integer -32768 to 32767
U16 16-bit unsigned integer 0 to 65535
I32 32-bit signed long integer -2147483648 to 2147483647
U32 32-bit unsigned long integer 0 to 4294967295
F32 32-bit single-precision floating-point -3.402823E38 to 3.402823E38

F64 64-bit double-precision floating-point -1.797683134862315E308 to
1.797683134862315E309

Boolean Boolean logic value TRUE, FALSE

The functions of PPCI7443’s software drivers use full-names to represent
the functions’ real meaning. The naming convention rules are :

In ‘C’ programming Environment :

_{hardware_model}_{action_name}. e.g. _7443_Initial() .

In order to recognize the difference between C library and VB library, a
capital “B” is put on the head of each function name e.g.
B_7443_Initial() .

Function Library • 119

6.3 Initialization

@ Name
_7443_Initial – Software Initialization for PPCI7443
_7443_close – Software release resources of PPCI7443
_7443_get_base_addr – Get the base address of PPCI7443
_7443_get_irq_channel – Get the PPCI7443 card’s IRQ number
_7443_delay_time – delay execution of program for specified time in unit of ms.
_7443_config_from_file – Configure PPCI7443 card according to configuration

file ie. 7443.ini.
_7443_version_info – Check hardware and software version information

@ Description
_7443_Initial :

This function is used to initialize PPCI7443 card. All PPCI7443 cards
must be initialized by this function before calling other functions.

_7443_close :
This function is used to close PPCI7443 card and release the
PPCI7443 related resources, which should be called at the end of an
application.

_7443_get_irq_channel :
This function is used to get the PPCI7443 card’s IRQ number.

_7443_get_base_addr:
This function is used to get the PPCI7443 card’s base address.

_7443_delay_time:
This function is used to delay execution of program for specified time
in unit of ms.

_7443_config_from_file:
This function is used to load the configuration of PPCI7443 according
to specified file. By using PPCI7443 Utility , user can test and
configure PPCI7443 correctly. After pressing “save config” button,
the 7443.ini file in window directory is used to record the
configurations. By specifying it in the parameter, the configuration will
be automatically loaded.
When this function is executed, all PPCI7443 cards in the system will
be configured as the following functions were called according to
parameters recorded in 7443.ini.

_7443_set_pls_outmode
_7443_set_feedback_src
_7443_set_pls_iptmode
_7443_set_home_config
_7443_set_int_factor
_7443_set_el
_7443_set_ltc_logic
_7443_set_erc
_7443_set_sd
_7443_set_alm
_7443_set_inp

120 • Function Library

_7443_set_move_ratio

_7443_version_info:
Let users readback version infomation.

@ Syntax

C/C++ (DOS, Windows 95/NT)
I16 _7443_initial(I16 *existCards);
I16 _7443_close(void);
I16 _7443_get_irq_channel(I16 cardNo, U16 *irq_no);
I16 _7443_get_base_addr(I16 cardNo, U16 *base_addr);
I16 _7443_delay_time(I16 AxisNo, U32 MiniSec);
I16 _7443_config_from_file(char *filename);
I16 _7443_version_info(I16 CardNo, U16 *HardwareInfo, U16
*SoftwareInfo, U16 *DriverInfo);

Visual Basic (Windows 95/NT)
B_7443_initial (existCards As Integer) As Integer
B_7443_close () As Integer
B_7443_get_irq_channel (ByVal CardNo As Integer, irq_no As Integer) As

Integer
B_7443_get_base_addr (ByVal CardNo As Integer, base_addr As Integer)

As Integer
B_7443_delay_time (ByVal AxisNo As Integer, ByVal MiniSec As Long) As

Integer
B_7443_config_from_file(ByVal filename As string)as integer
B_7443_version_info (ByVal CardNo As Integer, HardwareInfo As Integer,

SoftwareInfo As Integer, DriverInfo As Integer) As Integer

@ Argument
*existCards : numbers of existing PPCI7443 cards
cardNo : The PPCI7443 card index number.
*irq_no : Irq number of specified PPCI7443 card.
*base_addr : base address of specified PPCI7443 card
*Filename : The specified filename recording the configuration of PPCI7443.

This file must be created by PPCI7443 Utility.
AxisNo : axis number designated to move or stop.
MiniSec : Delay time(unit of ms)
*Hardwareinfo : Hardware version readback
*SoftwareInfo : Software library version readback
*DriverInfo : Device driver version readback

@ Return Code

ERR_NoErroe
ERR_NoCardFound
ERR_PCIBiosNotExist
ERR_ConigFileOpenError

Function Library • 121

6.4 Pulse Input/Output Configuration

@ Name
_7443_set_pls_outmode – Set the configuration for pulse command output.
_7443_set_pls_iptmode – Set the configuration for feedback pulse input.
_7443_set_feedback_src – Enable/Disable the external feedback pulse input

@ Description
_7443_set_pls_outmode:

Configure the output modes of command pulse. There are 6 modes
for command pulse output.

_7443_set_pls_iptmode:
Configure the input modes of external feedback pulse. There are four
types for feedback pulse input. Note that this function makes sense
only when Src parameter in _7443_set_feedback_src () function is
enabled.

_7443_set_feedback_src:
If external encoder feedback is available in the system, set the Src
parameter in this function to Enabled state. Then internal 28-bit
up/down counter will count according configuration of
_7443_set_pls_iptmode() function. Or the counter will count the
command pulse output.

@ Syntax

C/C++ (DOS, Windows 95/NT)
I16 _7443_set_pls_outmode(I16 AxisNo, I16 pls_outmode);
I16 _7443_set_pls_iptmode(I16 AxisNo, I16 pls_iptmode, I16 pls_logic);
I16 _7443_set_feedback_src(I16 AxisNo, I16 Src);

Visual Basic (Windows 95/NT)
B_7443_set_pls_outmode (ByVal AxisNo As Integer, ByVal pls_outmode

As Integer) As Integer
B_7443_set_pls_iptmode (ByVal AxisNo As Integer, ByVal pls_iptmode As

Integer, ByVal pls_logic As Integer) As Integer
B_7443_set_feedback_src (ByVal AxisNo As Integer, ByVal Src As Integer)

As Integer

122 • Function Library

@ Argument
AxisNo : axis number designated to configure pulse Input/Output.
pls_outmode: setting of command pulse output mode

Value Meaning
0 OUT/DIR OUT Falling edge, DIR+ is high level
1 OUT/DIR OUT Rising edge, DIR+ is high level
2 OUT/DIR OUT Falling edge, DIR+ is low level
3 OUT/DIR OUT Rising edge, DIR+ is low level
4 CW/CCW Falling edge
5 CW/CCW Rising edge

pls_iptmode: setting of encoder feedback pulse input mode
Value Meaning
0 1X A/B
1 2X A/B
2 4X A/B
3 CW/CCW

pls_logic : Logic of encoder feedback pulse
pls_logic=0, Normal low.
pls_logic=1, Normal high

Src : Counter source
Value Meaning
0 External Feedback
1 Command pulse

@ Return Code

ERR_NoError

Function Library • 123

6.5 Velocity mode motion

@ Name
_7443_tv_move – Accelerate an axis to a constant velocity with trapezoidal

profile
_7443_sv_move – Accelerate an axis to a constant velocity with S-curve profile
_7443_v_change –Change speed on the fly
_7443_sd_stop –Decelerate to stop
_7443_emg_stop –Immediately stop
_7443_fix_speed_range – Define the speed range
_7443_unfix_speed_range – Release the speed range constrain
_7443_get_current_speed – Get current speed
_7443_verify_speed – get speed profile’s minimum and maximum acc/dec time

@ Description
_7443_tv_move:

This function is to accelerate an axis to the specified constant
velocity with trapezoidal profile. The axis will continue to travel at a
constant velocity until the velocity is changed or the axis is
commanded to stop. The direction is determined by the sign of
velocity parameter.

_7443_sv_move:
This function is to accelerate an axis to the specified constant
velocity with S-curve profile. The axis will continue to travel at a
constant velocity until the velocity is changed or the axis is
commanded to stop. The direction is determined by the sign of
velocity parameter.

_7443_v_change:
This function changes the moving velocity with trapezoidal profile or
S-curve profile. Before calling this function, it is necessary to define
the speed range by _7443_fix_speed_range. _7443_v_change is
also applicable on pre-set motion. Note: The velocity profile is
decided by original motion profile. When using in S-curve, please set
the motion to be pure S-curve. There are some limitations for this
function, please refer to section 4.6.1 before use it.

_7443_sd_stop:
This function is used to decelerate an axis to stop with trapezoidal
profile or S-curve profile. This function is also useful when preset
move (both trapezoidal and S-curve motion), manual move or
home return function is performed. Note: The velocity profile is
decided by original motion profile.

_7443_emg_stop:
This function is used to immediately stop an axis. This function is
also useful when preset move (both trapezoidal and S-curve motion),
manual move or home return function is performed.

_7443_fix_speed_range
This function is used to define the speed range. It should be called

124 • Function Library

before starting motion that may contains velocity changing.
_7443_unfix_speed_range

This function is used to Release the speed range constrain.
_7443_get_current_speed

This function is used to read current pulse output rate of specified
axis. It is applicable in any time and any operating mode.

_7443_verify_speed
Find a speed profile’s minimum and maximum acc/time time.

@ Syntax

C/C++ (DOS, Windows 95/NT)
I16 _7443_tv_move(I16 AxisNo, F64 StrVel, F64 MaxVel, F64 Tacc);
I16 _7443_sv_move(I16 AxisNo, F64 StrVel, F64 MaxVel, F64 Tacc, F64

SVacc);
I16 _7443_v_change(I16 AxisNo, F64 NewVel, F64 Tacc);
I16 _7443_sd_stop(I16 AxisNo,F64 Tdec);
I16 _7443_emg_stop(I16 AxisNo);
F64 _7443_fix_speed_range(I16 AxisNo, F64 MaxVel);
I16 _7443_unfix_speed_range(I16 AxisNo);
I16 _7443_get_current_speed(I16 AxisNo, F64 *speed);
F64 _7443_verify_speed(F64 StrVel,F64 MaxVel,F64 *minAccT,F64

*maxAccT, F64 MaxSpeed);

Visual Basic (Windows 95/NT)
B_7443_tv_move (ByVal AxisNo As Integer, ByVal StrVel As Double, ByVal

MaxVel As Double, ByVal Tacc As Double) As Integer
B_7443_sv_move (ByVal AxisNo As Integer, ByVal StrVel As Double,

ByVal MaxVel As Double, ByVal Tacc As Double, ByVal SVacc As
Double) As Integer

B_7443_v_change (ByVal AxisNo As Integer, ByVal NewVel As Double,
ByVal TimeSecond As Double) As Integer

B_7443_sd_stop (ByVal AxisNo As Integer, ByVal Tdec As Double) As
Integer

B_7443_emg_stop (ByVal AxisNo As Integer) As Integer
B_7443_fix_speed_range (ByVal AxisNo As Integer, ByVal MaxVel As

Double) As Integer
B_7443_unfix_speed_range (ByVal AxisNo As Integer) As Integer
B_7443_get_current_speed (ByVal AxisNo As Integer, Speed As Double)

As Integer
B_7443_verify_speed (ByVal StrVel As Double, ByVal MaxVel As Double,

minAccT As Double, maxAccT As Double, ByVal MaxSpeed As
Double) As Double

Function Library • 125

@ Argument
AxisNo : axis number designated to move or stop.
StrVel : starting velocity in unit of pulse per second
MaxVel : maximum velocity in unit of pulse per second
Tacc : specified acceleration time in unit of second
SVacc : specified velocity interval in which S-curve acceleration is

performed.
Note: SVacc = 0, for pure S-curve

NewVel : New velocity in unit of pulse per second
Tdec : specified deceleration time in unit of second
*Speed: Variable to save current speed.

(speed range: 0~6553500)
minAccT : Minimum acceleration time .
maxAcct : Maximum acceleration time
MaxSpeed : The speed set by Fix_Speed

@ Return Code

ERR_NoError
ERR_SpeedError
ERR_SpeedChangeError
ERR_SlowDownPointError
ERR_AxisAlreadyStop

126 • Function Library

6.6 Single Axis Position Mode

@ Name
_7443_start_tr_move – Begin a relative trapezoidal profile move
_7443_start_ta_move – Begin an absolute trapezoidal profile move
_7443_start_sr_move – Begin a relative S-curve profile move
_7443_start_sa_move – Begin an absolute S-curve profile move
_7443_set_move_ratio –Set the ratio of command pulse and feedback pulse.
_7443_p_change – Change position on the fly
_7443_set_pcs_logic –Set the logic of PCS (Position Change Signal) pin
_7443_set_sd_pin –Set SD/PCS pin
_7443_backlash_comp – Set backlash compensating pulse for compensation
_7443_suppress_vibration – Set vibration suppressing timing
_7443_set_idle_pulse – Set suppress vibration idle pulse counts

@ Description

General: The moving direction is determined by the sign of Pos or Dist
parameter. If the moving distance is too short to reach the specified
velocity, the controller will automatically lower the MaxVel ,and the
Tacc, Tdec, SVacc, SVdec, will also become shorter while the
dV/dt(acceleration / deceleration) and d(dV/dt)/dt (jerk) keep
unchanged.

_7443_start_tr_move:
This function causes the axis to accelerate from a starting velocity,
slew at constant velocity, and decelerate to stop at the relative
distance with trapezoidal profile. The acceleration and deceleration
time is specified independently. It won’t let the program wait for
motion completion but immediately return control to the program.

_7443_start_ta_move :
This function causes the axis to accelerate from a starting velocity,
slew at constant velocity, and decelerate to stop at the specified
absolute position with trapezoidal profile. The acceleration and
deceleration time is specified independently. It won’t let the program
wait for motion completion but immediately return control to the
program.

_7443_start_sr_move:
This function causes the axis to accelerate from a starting velocity,
slew at constant velocity, and decelerate to stop at the relative
distance with S-curve profile. The acceleration and deceleration time
is specified independently. It won’t let the program wait for motion
completion but immediately return control to the program.

Function Library • 127

_7443_start_sa_move :
This function causes the axis to accelerate from a starting velocity,
slew at constant velocity, and decelerate to stop at the specified
absolute position with S-curve profile. The acceleration and
deceleration time is specified independently. It won’t let the program
wait for motion completion but immediately return control to the
program.

_7443_set_move_ratio :
This function configures scale factors for the specified axis. Usually,
the axes only need scale factors if their mechanical resolutions are
different. For example, if the resolution of feedback sensors is two
times resolution of command pulse, then ratio = 2 .

_7443_p_change
This function is used to change target position on the fly. There are
some limitations for this function. Please refer to section 4.6.2 before
use it.

_7443_set_pcs_logic :
This function is used to set the logic of Position Change Signal (pcs).
The PCS share the same pin with SD signal. Only when the SD/PCS
pin was set to PCS by _7443_set_sd_pin, this _7443_set_pcs_logic
function becomes effective.

_7443_set_sd_pin :
This function is used to set the operating mode of SD pin. The SD
pin may be used either as Slow-Down signal input or as Position
Change Signal (PCS) input. Please refer to section 4.3.1

_7443_backlash_comp :
Whenever direction change is occurred, The PPCI7443 outputs
backlash corrective pulses before sending commands. This function
is used set the compensation pulse numbers.

_7443_suppress_vibration
This function is used to suppress vibration of mechanical system by
outputting single pulse for negative direction and then single pulse
for positive direction right after completion of command movement.

(+) Direction

(-) Direction

Final Pulse

T1 T2

T1/2 T2/2

128 • Function Library

_7443_set_idle_pulse :
The idling pulse to control the vibration of the machine is set up.
Acceleration is made to start after number pulse idling is outputted at
a start speed when a movement starts.
Attention :
Set up 2 - 7 in the setup value when you use this function.
Set up 0 or 1 when you don't use it.

@ Syntax

C/C++ (DOS, Windows 95/NT)
I16 _7443_start_tr_move(I16 AxisNo, F64 Dist, F64 StrVel, F64 MaxVel,

F64 Tacc,F64 Tdec);
I16 _7443_start_ta_move(I16 AxisNo, F64 Pos, F64 StrVel, F64 MaxVel,

F64 Tacc, F64 Tdec);
I16 _7443_start_sr_move(I16 AxisNo, F64 Dist, F64 StrVel, F64 MaxVel,

F64 Tacc, F64 Tdec, F64 SVacc, F64 SVdec);
I16 _7443_start_sa_move(I16 AxisNo, F64 Pos, F64 StrVel, F64 MaxVel,

F64 Tacc, F64 Tdec, F64 SVacc, F64 SVdec);
I16 _7443_set_move_ratio(I16 AxisNo, F64 move_ratio);
I16 _7443_p_change(I16 AxisNo, F64 NewPos);
I16 _7443_set_pcs_logic(I16 AxisNo, I16 pcs_logic);
I16 _7443_set_sd_pin(I16 AxisNo, I16 Type);
I16 _7443_backlash_comp(I16 AxisNo, I16 BCompPulse);
I16 _7443_suppress_vibration(I16 AxisNo, U16 T1, U16 T2);
I16 _7443_set_idle_pulse(I16 AxisNo, I16 idl_pulse);

BSY

OUT
1 2 3

FUP

From the 0th pulse, acceleration start .

BSY

OUT
1 2 3

FUP

From the 3th pulse, acceleration start .

The period of the FL speed

N=0 and N=1

N=3

Function Library • 129

Visual Basic (Windows 95/NT)
B_7443_start_tr_move (ByVal AxisNo As Integer, ByVal Dist As Double,

ByVal StrVel As Double, ByVal MaxVel As Double, ByVal Tacc As
Double, ByVal Tdec As Double) As Integer

B_7443_start_ta_move (ByVal AxisNo As Integer, ByVal Pos As Double,
ByVal StrVel As Double, ByVal MaxVel As Double, ByVal Tacc As
Double, ByVal Tdec As Double) As Integer

B_7443_start_sr_move (ByVal AxisNo As Integer, ByVal Dist As Double,
ByVal StrVel As Double, ByVal MaxVel As Double, ByVal Tacc As
Double, ByVal Tdec As Double, ByVal SVacc As Double, ByVal
SVdec As Double) As Integer

B_7443_start_sa_move (ByVal AxisNo As Integer, ByVal Pos As Double,
ByVal StrVel As Double, ByVal MaxVel As Double, ByVal Tacc As
Double, ByVal Tdec As Double, ByVal SVacc As Double, ByVal
SVdec As Double) As Integer

B_7443_set_move_ratio (ByVal AxisNo As Integer, ByVal move_ratio As
Double) As Integer

B_7443_p_change (ByVal AxisNo As Integer, ByVal NewPos As Double)
As Integer

B_7443_set_pcs_logic (ByVal AxisNo As Integer, ByVal pcs_logic As
Integer) As Integer

B_7443_set_sd_pin (ByVal AxisNo As Integer, ByVal Type As Integer) As
Integer

B_7443_backlash_comp (ByVal AxisNo As Integer, ByVal BCompPulse As
Integer, ByVal ForwardTime As Integer) As Integer

B_7443_suppress_vibration (ByVal AxisNo As Integer, ByVal ReserveTime
As Integer, ByVal ForwardTime As Integer) As Integer

B_7443_set_idle_pulse(ByVal AxisNo As Integer, ByVal idl_pulse As
Integer);

130 • Function Library

@ Argument
AxisNo : axis number designated to move or change position.
Dist : specified relative distance to move
Pos : specified absolute position to move
StrVel : starting velocity of a velocity profile in unit of pulse per second
MaxVel : maximum velocity of a velocity profile in unit of pulse per second
Tacc : specified acceleration time in unit of second
Tdec : specified deceleration time in unit of second
SVacc : specified velocity interval in which S-curve acceleration is

performed.
Note: SVacc = 0, for pure S-curve

SVdec : specified velocity interval in which S-curve deceleration is
performed.
Note: SVdec = 0, for pure S-curve

Move_ratio : ratio of (feedback resolution)/(command resolution) , should
not be 0

NewPos: specified new absolute position to move
pcs_logic: Specify he pcs logic.

Value = 0: low active ,
Value = 1: high active

Type : define the SD pin usage
Value = 0 : SD pin as SD signal
Value = 1: SD pin as PCS signal

BcompPulse : Specified number of corrective pulses
T1: Specified Reverse Time
T2: Specified Forward Time
Idl_pulse : Idl_pulse=0~7

@ Return Code

ERR_NoError
ERR_SpeedError
ERR_PChangeSlowDownPointError
ERR_MoveRatioError

Function Library • 131

6.7 Linear Interpolated Motion

@ Name
_7443_start_tr_move_xy – Begin a relative 2-axis linear interpolation for X & Y,

with trapezoidal profile,
_7443_start_ta_move_xy – Begin a absolute 2-axis linear interpolation for X & Y,

with trapezoidal profile,
_7443_start_sr_move_xy – Begin a relative 2-axis linear interpolation for X & Y,

with S-curve profile,
_7443_start_sa_move_xy – Begin a absolute 2-axis linear interpolation for X & Y,

with S-curve profile,
_7443_start_tr_move_zu – Begin a relative 2-axis linear interpolation for Z & U,

with trapezoidal profile,
_7443_start_ta_move_zu – Begin a absolute 2-axis linear interpolation for Z & U,

with trapezoidal profile,
_7443_start_sr_move_zu – Begin a relative 2-axis linear interpolation for Z & U,

with S-curve profile,
_7443_start_sa_move_zu – Begin a absolute 2-axis linear interpolation for Z & U,

with S-curve profile,
_7443_start_tr_line2 – Begin a relative 2-axis linear interpolation for any 2 axes,

with trapezoidal profile,
_7443_start_sr_line2 – Begin a relative 2-axis linear interpolation for any 2 axes,,

with S-curve profile
_7443_start_ta_line2 – Begin a absolute 2-axis linear interpolation for any 2 axes,,

with trapezoidal profile
_7443_start_sa_line2 – Begin a absolute 2-axis linear interpolation for any 2 axes,,

with S-curve profile,
_7443_start_tr_line3 – Begin a relative 3-axis linear interpolation with trapezoidal

profile,
_7443_start_sr_line3 – Begin a relative 3-axis linear interpolation with S-curve

profile
_7443_start_ta_line3 – Begin a absolute 3-axis linear interpolation with

trapezoidal profile
_7443_start_sa_line3 – Begin a absolute 3-axis linear interpolation with S-curve

profile,
_7443_start_tr_line4 – Begin a relative 4-axis linear interpolation with trapezoidal

profile,
_7443_start_sr_line4 – Begin a relative 4-axis linear interpolation with S-curve

profile
_7443_start_ta_line4 – Begin a absolute 4-axis linear interpolation with

trapezoidal profile
_7443_start_sa_line4 – Begin a absolute 4-axis linear interpolation with S-curve

profile,
_7443_set_line_move_mode – Set continuous line interpolation mode
_7443_set_axis_option – Choose the interpolation speed mode

132 • Function Library

@ Description

Functions No. of
interpolating
axes

Speed
Profile

Relative/A
bsolute

Target
Axes

_7443_start_tr_move_xy 2 Trapezoidal R Axis 0 & 1

_7443_start_ta_move_xy 2 Trapezoidal A Axis 0 & 1

_7443_start_sr_move_xy 2 S-curve R Axis 0 & 1

_7443_start_sa_move_xy 2 S-curve A Axis 0 & 1

_7443_start_tr_move_zu 2 Trapezoidal R Axis 2 & 3

_7443_start_ta_move_zu 2 Trapezoidal A Axis 2 & 3

_7443_start_sr_move_zu 2 S-curve R Axis 2 & 3

_7443_start_sa_move_zu 2 S-curve A Axis 2 & 3

_7443_start_tr_line2 2 Trapezoidal R Any 2 of 4

_7443_start_ta_ line2 2 Trapezoidal A Any 2 of 4�

_7443_start_sr_ line2 2 S-curve R Any 2 of 4�

_7443_start_sa_ line2 2 S-curve A Any 2 of 4�

_7443_start_tr_ line3 3 Trapezoidal R Any 3 of 4�

_7443_start_ta_ line3 3 Trapezoidal A Any 3 of 4�

_7443_start_sr_ line3 3 S-curve R Any 3 of 4�

_7443_start_sa_ line3 3 S-curve A Any 3 of 4�

_7443_start_tr_ line4 4 Trapezoidal R Any 4 of 4�

_7443_start_ta_ line4 4 Trapezoidal A Any 4 of 4�

_7443_start_sr_ line4 4 S-curve R Any 4 of 4�

_7443_start_sa_ line4 4 S-curve A Any 4 of 4�

_7443_set_line_move_tmode :
There is continuous interpolation mode in the line interpolation of 4
axes from 2 axes. An interpolation movement is continued until a
position of a stop is not a distance but a stop command is written
when this mode is set up in the continuance. It becomes the
continuous interpolation mode when the mode parameter of the
_7443_set_line_mode() command is set up in "1".It becomes the
positioning interpolation mode when "0" is set up.

@ Syntax

C/C++ (DOS, Windows 95/NT)
I16 _7443_start_tr_move_xy(I16 CardNo, F64 DistX, F64 DistY, F64 StrVel,

F64 MaxVel, F64 Tacc, F64 Tdec);
I16 _7443_start_ta_move_xy(I16 CardNo, F64 PosX, F64 PosY, F64 StrVel,

F64 MaxVel, F64 Tacc, F64 Tdec);
I16 _7443_start_sr_move_xy(I16 CardNo, F64 DistX, F64 DistY, F64 StrVel,

F64 MaxVel, F64 Tacc, F64 Tdec, F64 SVacc, F64 SVdec);
I16 _7443_start_sa_move_xy(I16 CardNo, F64 PosX, F64 PosY, F64

StrVel, F64 MaxVel, F64 Tacc, F64 Tdec, F64 SVacc, F64 SVdec);

Function Library • 133

I16 _7443_start_tr_move_zu(I16 CardNo, F64 DistX, F64 DistY, F64 StrVel,
F64 MaxVel, F64 Tacc, F64 Tdec);

I16 _7443_start_ta_move_zu(I16 CardNo, F64 PosX, F64 PosY, F64 StrVel,
F64 MaxVel, F64 Tacc, F64 Tdec);

I16 _7443_start_sr_move_zu(I16 CardNo, F64 DistX, F64 DistY, F64 StrVel,
F64 MaxVel, F64 Tacc, F64 Tdec, F64 SVacc, F64 SVdec);

I16 _7443_start_sa_move_zu(I16 CardNo, F64 PosX, F64 PosY, F64
StrVel, F64 MaxVel, F64 Tacc, F64 Tdec, F64 SVacc, F64 SVdec);

I16 _7443_start_tr_line2(I16 CardNo, I16 *AxisArray, F64 DistX, F64 DistY,
F64 StrVel, F64 MaxVel, F64 Tacc, F64 Tdec);

I16 _7443_start_ta_line2(I16 CardNo, I16 *AxisArray, F64 PosX, F64 PosY,
F64 StrVel, F64 MaxVel, F64 Tacc, F64 Tdec);

I16 _7443_start_sr_line2(I16 CardNo, I16 *AxisArray, F64 DistX, F64 DistY,
F64 StrVel, F64 MaxVel, F64 Tacc, F64 Tdec, F64 SVacc, F64
SVdec);

I16 _7443_start_sa_line2(I16 CardNo, I16 *AxisArray, F64 PosX, F64 PosY,
F64 StrVel, F64 MaxVel, F64 Tacc, F64 Tdec, F64 SVacc, F64
SVdec);

I16 _7443_start_tr_line3(I16 CardNo, I16 *AxisArray, F64 DistX, F64 DistY,
F64 DistZ, F64 StrVel, F64 MaxVel, F64 Tacc, F64 Tdec);

I16 _7443_start_ta_line3(I16 CardNo, I16 *AxisArray, F64 PosX, F64 PosY,
F64 PosZ, F64 StrVel, F64 MaxVel, F64 Tacc, F64 Tdec);

I16 _7443_start_sr_line3(I16 CardNo, I16 *AxisArray, F64 DistX, F64 DistY,
F64 DistZ, F64 StrVel, F64 MaxVel, F64 Tacc, F64 Tdec, F64
SVacc, F64 SVdec);

I16 _7443_start_sa_line3(I16 CardNo, I16 *AxisArray, F64 PosX, F64 PosY,
F64 PosZ, F64 StrVel, F64 MaxVel, F64 Tacc, F64 Tdec, F64
SVacc, F64 SVdec);

I16 _7443_start_tr_line4(I16 CardNo, F64 DistX, F64 DistY, F64 DistZ, F64
DistU, F64 StrVel, F64 MaxVel, F64 Tacc, F64 Tdec);

I16 _7443_start_ta_line4(I16 CardNo, F64 PosX, F64 PosY, F64 PosZ, F64
PosU, F64 StrVel, F64 MaxVel, F64 Tacc, F64 Tdec);

I16 _7443_start_sr_line4(I16 CardNo, F64 DistX, F64 DistY, F64 DistZ, F64
DistU, F64 StrVel, F64 MaxVel, F64 Tacc, F64 Tdec, F64 SVacc,
F64 SVdec);

I16 _7443_start_sa_line4(I16 CardNo, F64 PosX, F64 PosY, F64 PosZ,
F64 PosU, F64 StrVel, F64 MaxVel, F64 Tacc, F64 Tdec, F64
SVacc, F64 SVdec);

I16 _7443_set_line_move_mode(I16 AxisNo, I16 Mode);
I16 _7443_set_axis_option(I16 AxisNo, I16 option);

Visual Basic (Windows 95/NT)
B_7443_start_tr_move_xy (ByVal CardNo As Integer, ByVal Dist As Double,

ByVal Dist As Double, ByVal StrVel As Double, ByVal MaxVel As
Double, ByVal Tacc As Double, ByVal Tdec As Double) As Integer

B_7443_start_ta_move_xy (ByVal CardNo As Integer, ByVal Pos As
Double, ByVal Pos As Double, ByVal StrVel As Double, ByVal
MaxVel As Double, ByVal Tacc As Double, ByVal Tdec As Double)
As Integer

B_7443_start_sr_move_xy (ByVal CardNo As Integer, ByVal Dist As
Double, ByVal Dist As Double, ByVal StrVel As Double, ByVal
MaxVel As Double, ByVal Tacc As Double, ByVal Tdec As Double,
ByVal SVacc As Double, ByVal SVdec As Double) As Integer

134 • Function Library

B_7443_start_sa_move_xy (ByVal CardNo As Integer, ByVal Pos As
Double, ByVal Pos As Double, ByVal StrVel As Double, ByVal
MaxVel As Double, ByVal Tacc As Double, ByVal Tdec As Double,
ByVal SVacc As Double, ByVal SVdec As Double) As Integer

B_7443_start_tr_move_zu (ByVal CardNo As Integer, ByVal Dist As Double,
ByVal Dist As Double, ByVal StrVel As Double, ByVal MaxVel As
Double, ByVal Tacc As Double, ByVal Tdec As Double) As Integer

B_7443_start_ta_move_zu (ByVal CardNo As Integer, ByVal Pos As
Double, ByVal Pos As Double, ByVal StrVel As Double, ByVal
MaxVel As Double, ByVal Tacc As Double, ByVal Tdec As Double)
As Integer

B_7443_start_sr_move_zu (ByVal CardNo As Integer, ByVal Dist As
Double, ByVal Dist As Double, ByVal StrVel As Double, ByVal
MaxVel As Double, ByVal Tacc As Double, ByVal Tdec As Double,
ByVal SVacc As Double, ByVal SVdec As Double) As Integer

B_7443_start_sa_move_zu (ByVal CardNo As Integer, ByVal Pos As
Double, ByVal Pos As Double, ByVal StrVel As Double, ByVal
MaxVel As Double, ByVal Tacc As Double, ByVal Tdec As Double,
ByVal SVacc As Double, ByVal SVdec As Double) As Integer

B_7443_start_tr_line2 (ByVal CardNo As Integer, AxisArray As Integer,
ByVal DistX As Double, ByVal DistY As Double, ByVal StrVel As
Double, ByVal MaxVel As Double, ByVal Tacc As Double, ByVal
Tdec As Double) As Integer

B_7443_start_ta_line2 (ByVal CardNo As Integer, AxisArray As Integer,
ByVal PosX As Double, ByVal PosY As Double, ByVal StrVel As
Double, ByVal MaxVel As Double, ByVal Tacc As Double, ByVal
Tdec As Double) As Integer

B_7443_start_sr_line2 (ByVal CardNo As Integer, AxisArray As Integer,
ByVal DistX As Double, ByVal DistY As Double, ByVal StrVel As
Double, ByVal MaxVel As Double, ByVal Tacc As Double, ByVal
Tdec As Double, ByVal SVacc As Double, ByVal SVdec As Double)
As Integer

B_7443_start_sa_line2 (ByVal CardNo As Integer, AxisArray As Integer,
ByVal PosX As Double, ByVal PosY As Double, ByVal StrVel As
Double, ByVal MaxVel As Double, ByVal Tacc As Double, ByVal
Tdec As Double, ByVal SVacc As Double, ByVal SVdec As Double)
As Integer

B_7443_start_tr_line3 (ByVal CardNo As Integer, AxisArray As Integer,
ByVal DistX As Double, ByVal DistY As Double, ByVal DistZ As
Double, ByVal StrVel As Double, ByVal MaxVel As Double, ByVal
Tacc As Double, ByVal Tdec As Double) As Integer

B_7443_start_ta_line3 (ByVal CardNo As Integer, AxisArray As Integer,
ByVal PosX As Double, ByVal PosY As Double, ByVal PosZ As
Double, ByVal StrVel As Double, ByVal MaxVel As Double, ByVal
Tacc As Double, ByVal Tdec As Double) As Integer

B_7443_start_sr_line3 (ByVal CardNo As Integer, AxisArray As Integer,
ByVal DistX As Double, ByVal DistY As Double, ByVal DistZ As
Double, ByVal StrVel As Double, ByVal MaxVel As Double, ByVal
Tacc As Double, ByVal Tdec As Double, ByVal SVacc As Double,
ByVal SVdec As Double) As Integer

Function Library • 135

B_7443_start_sa_line3 (ByVal CardNo As Integer, AxisArray As Integer,
ByVal PosX As Double, ByVal PosY As Double, ByVal PosZ As
Double, ByVal StrVel As Double, ByVal MaxVel As Double, ByVal
Tacc As Double, ByVal Tdec As Double, ByVal SVacc As Double,
ByVal SVdec As Double) As Integer

B_7443_start_tr_line4 (ByVal CardNo As Integer, ByVal DistX As Double,
ByVal DistY As Double, ByVal DistZ As Double, ByVal DistU As
Double, ByVal StrVel As Double, ByVal MaxVel As Double, ByVal
Tacc As Double, ByVal Tdec As Double) As Integer

B_7443_start_ta_line4 (ByVal CardNo As Integer, ByVal PosX As Double,
ByVal PosY As Double, ByVal PosZ As Double, ByVal PosU As
Double, ByVal StrVel As Double, ByVal MaxVel As Double, ByVal
Tacc As Double, ByVal Tdec As Double) As Integer

B_7443_start_sr_line4 (ByVal CardNo As Integer, ByVal DistX As Double,
ByVal DistY As Double, ByVal DistZ As Double, ByVal DistU As
Double, ByVal StrVel As Double, ByVal MaxVel As Double, ByVal
Tacc As Double, ByVal Tdec As Double, ByVal SVacc As Double,
ByVal SVdec As Double) As Integer

B_7443_start_sa_line4 (ByVal CardNo As Integer, ByVal PosX As Double,
ByVal PosY As Double, ByVal PosZ As Double, ByVal PosU As
Double, ByVal StrVel As Double, ByVal MaxVel As Double, ByVal
Tacc As Double, ByVal Tdec As Double, ByVal SVacc As Double,
ByVal SVdec As Double) As Integer

B_7443_set_line_move_mode (ByVal AxisNo As Integer, ByVal Mode As
Integer) As Integer

B_7443_set_axis_option (ByVal AxisNo As Integer, ByVal option1 As
Integer) As Integer

136 • Function Library

@ Argument
CardNo: Card number designated to perform linear interpolation
DistX : specified relative distance of axis 0 to move
DistY : specified relative distance of axis 1 to move
DistZ : specified relative distance of axis 2 to move
DistU : specified relative distance of axis 3 to move
PosX : specified absolute position of axis 0 to move
PosY : specified absolute position of axis 1 to move
PosZ : specified absolute position of axis 2 to move
PosU : specified absolute position of axis 3 to move
StrVel : starting velocity of a velocity profile in unit of pulse per second
MaxVel : starting velocity of a velocity profile in unit of pulse per second
Tacc : specified acceleration time in unit of second
Tdec : specified deceleration time in unit of second
SVacc : specified velocity interval in which S-curve acceleration is

performed.
Note: SVacc = 0, for pure S-curve

SVdec : specified velocity interval in which S-curve deceleration is
performed.
Note: SVdec = 0, for pure S-curve

AxisArray : Array of axis number to perform interpolation.
Example: Int AxisArray[2] = {0,2}; // axis 0 & 2

Int AxisArray[3] = {0,1,3}; // axis 0,1,3
Note: AxisArray[n] must be smaller than AxisArray[m], if n<m.

Mode : InterPoration mode
Mode = 0 : positioning line interpolation mode
Mode = 1 : C ontinuous line interpolation mode

Option1 : 0=default line move mode
1=Composite speed constant mode

@ Return Code

ERR_NoError
ERR_SpeedError
ERR_AxisArrayErrot

Function Library • 137

6.8 Circular Interpolation Motion

@ Name
_7443_start_r_arc_xy – Begin a relative circular interpolation for X & Y
_7443_start_a_arc_xy – Begin a absolute circular interpolation for X & Y
_7443_start_r_arc_zu – Begin a relative circular interpolation for Z & U
_7443_start_a_arc_zu – Begin a absolute circular interpolation for Z & U
_7443_start_r_arc2 – Begin a relative circular interpolation for any 2 axes
_7443_start_a_arc2 – Begin a absolute circular interpolation for any 2 axes

_7443_start_tr_arc_xyu – Begin a Trapezoidal relative circular interpolation
_7443_start_ta_arc_xyu – Begin a Trapezoidal absolute circular interpolation
_7443_start_sr_arc_xyu – Begin a S-curve relative circular interpolation
_7443_start_sa_arc_xyu – Begin a S-curve absolute circular interpolation
_7443_start_tr_arc_yzu – Begin a Trapezoidal relative circular interpolation
_7443_start_ta_arc_yzu – Begin a Trapezoidal absolute circular interpolation
_7443_start_sr_arc_yzu – Begin a S-curve relative circular interpolation
_7443_start_sa_arc_yzu – Begin a Trapezoidal absolute circular interpolation

_7443_start_tr_arc2 – Begin a Trapezoidal relative circular interpolation
_7443_start_ta_arc2 – Begin a Trapezoidal absolute circular interpolation
_7443_start_sr_arc2– Begin a S-curve relative circular interpolation
_7443_start_sa_arc2– Begin a S-curve absolute circular interpolation
_7443_start_tr_arc_xy – Begin a Trapezoidal relative circular interpolation
_7443_start_ta_arc_xy – Begin a Trapezoidal absolute circular interpolation
_7443_start_tr_arc_zu – Begin a Trapezoidal relative circular interpolation
_7443_start_ta_arc_zu – Begin a Trapezoidal absolute circular interpolation
_7443_start_sr_arc_xy – Begin a S-curve relative circular interpolation
_7443_start_sa_arc_xy – Begin a S-curve absolute circular interpolation
_7443_start_sr_arc_zu – Begin a S-curve relative circular interpolation
_7443_start_sa_arc_zu – Begin a S-curve absolute circular interpolation

@ Description

Function Relative/
Absolute

Speed Profile Target Axes Hardware
version bit 12

_7443_start_r_arc_xy R Flat Axis 0 & 1 0 or 1

_7443_start_a_arc_xy A Flat Axis 0 & 1 0 or 1

_7443_start_r_arc_zu R Flat Axis 2 & 3 0 or 1

_7443_start_a_arc_zu A Flat Axis 2 & 3 0 or 1

_7443_start_r_arc2 R Flat Any 2 of 4 0 or 1

_7443_start_a_arc2 A Flat Any 2 of 4 0 or 1�

_7443_start_tr_arc_xyu R Trapezoidal Axis 0 & 1 0 or 1

_7443_start_ta_arc_xyu A Trapezoidal Axis 0 & 1 0 or 1

_7443_start_sr_arc_xyu R S-curve Axis 1 & 2 0 or 1

_7443_start_sa_arc_xyu A S-curve Axis 1 & 2 0 or 1�

_7443_start_tr_arc_xy R Trapezoidal Axis 0 & 1 1

_7443_start_ta_arc_xy A Trapezoidal Axis 0 & 1 1

138 • Function Library

_7443_start_sr_arc_xy R S-curve Axis 0 & 1 1

_7443_start_sa_arc_xy A S-curve Axis 0 & 1 1

_7443_start_tr_arc_zu R Trapezoidal Axis 2 & 3 1

_7443_start_ta_arc_zu A Trapezoidal Axis 2 & 3 1

_7443_start_sr_arc_zu R S-curve Axis 2 & 3 1

_7443_start_sa_arc_zu A S-curve Axis 2 & 3 1

_7443_start_tr_arc2 R Trapezoidal Any 2 of 4 1

_7443_start_ta_arc2 A Trapezoidal Any 2 of 4 1�

_7443_start_sr_arc2 R S-curve Any 2 of 4 1

_7443_start_sa_arc2 A S-curve Any 2 of 4 1�

@ Syntax

C/C++ (DOS, Windows 95/NT)
I16 _7443_start_r_arc_xy(I16 CardNo, F64 OffsetCx, F64 OffsetCy, F64

OffsetEx, F64 OffsetEy, I16 DIR, F64 MaxVel);
I16 _7443_start_a_arc_xy(I16 CardNo, F64 Cx, F64 Cy, F64 Ex, F64 Ey,

I16 DIR, F64 MaxVel);
I16 _7443_start_r_arc_zu(I16 CardNo, F64 OffsetCx, F64 OffsetCy, F64

OffsetEx, F64 OffsetEy, I16 DIR, F64 MaxVel);
I16 _7443_start_a_arc_zu(I16 CardNo, F64 Cx, F64 Cy, F64 Ex, F64 Ey,

I16 DIR, F64 MaxVel);
I16 _7443_start_r_arc2(I16 CardNo, I16 *AxisArray, F64 OffsetCx, F64

OffsetCy, F64 OffsetEx, F64 OffsetEy, I16 DIR, F64 MaxVel);
I16 _7443_start_a_arc2(I16 CardNo, I16 *AxisArray, F64 Cx, F64 Cy, F64

Ex, F64 Ey, I16 DIR, F64 MaxVel);

I16 _7443_start_tr_arc_xyu(I16 CardNo, F64 OffsetCx, F64 OffsetCy, F64
OffsetEx, F64 OffsetEy, I16 DIR, F64 StrVel, F64 MaxVel, F64
Tacc);

I16 _7443_start_ta_arc_xyu(I16 CardNo, F64 Cx, F64 Cy, F64 Ex, F64 Ey,
I16 DIR, F64 StrVel, F64 MaxVel, F64 Tacc);

I16 _7443_start_sr_arc_xyu(I16 CardNo, F64 OffsetCx, F64 OffsetCy, F64
OffsetEx, F64 OffsetEy, I16 DIR, F64 StrVel, F64 MaxVel, F64 Tacc,
F64 SVacc);

I16 _7443_start_sa_arc_xyu(I16 CardNo, F64 Cx, F64 Cy, F64 Ex, F64 Ey,
I16 DIR, F64 StrVel, F64 MaxVel, F64 Tacc, F64 SVacc);

I16 _7443_start_tr_arc_yzu(I16 CardNo, F64 OffsetCx, F64 OffsetCy, F64
OffsetEx, F64 OffsetEy, I16 DIR, F64 StrVel, F64 MaxVel, F64
Tacc);

I16 _7443_start_ta_arc_yzu(I16 CardNo, F64 Cx, F64 Cy, F64 Ex, F64 Ey,
I16 DIR, F64 StrVel, F64 MaxVel, F64 Tacc);

I16 _7443_start_sr_arc_yzu(I16 CardNo, F64 OffsetCx, F64 OffsetCy, F64
OffsetEx, F64 OffsetEy, I16 DIR, F64 StrVel, F64 MaxVel, F64 Tacc,
F64 SVacc);

I16 _7443_start_sa_arc_yzu(I16 CardNo, F64 Cx, F64 Cy, F64 Ex, F64 Ey,
I16 DIR, F64 StrVel, F64 MaxVel, F64 Tacc, F64 SVacc);

Function Library • 139

I16 _7443_start_tr_arc2(I16 CardNo, I16 *AxisArray, F64 OffsetCx, F64
OffsetCy, F64 OffsetEx, F64 OffsetEy, I16 DIR, F64 StrVel,F64
MaxVel, F64 Tacc,F64 Tdec);

I16 _7443_start_ta_arc2(I16 CardNo, I16 *AxisArray, F64 Cx, F64 Cy, F64
Ex, F64 Ey, I16 DIR, F64 StrVel, F64 MaxVel, F64 Tacc,F64 Tdec);

I16 _7443_start_sr_arc2(I16 CardNo, I16 *AxisArray, F64 OffsetCx, F64
OffsetCy, F64 OffsetEx, F64 OffsetEy, I16 DIR, F64 StrVel,F64
MaxVel, F64 Tacc,F64 Tdec,F64 SVacc,F64 SVdec);

I16 _7443_start_sa_arc2(I16 CardNo, I16 *AxisArray, F64 Cx, F64 Cy, F64
Ex, F64 Ey, I16 DIR, F64 StrVel, F64 MaxVel, F64 Tacc,F64
Tdec,F64 SVacc,F64 SVdec);

I16 _7443_start_tr_arc_xy(I16 CardNo, F64 OffsetCx, F64 OffsetCy, F64
OffsetEx, F64 OffsetEy, I16 DIR, F64 StrVel,F64 MaxVel,F64
Tacc,F64 Tdec);

I16 _7443_start_ta_arc_xy(I16 CardNo, F64 Cx, F64 Cy, F64 Ex, F64 Ey,
I16 DIR, F64 StrVel,F64 MaxVel,F64 Tacc,F64 Tdec);

I16 _7443_start_tr_arc_zu(I16 CardNo, F64 OffsetCx, F64 OffsetCy, F64
OffsetEx, F64 OffsetEy, I16 DIR, F64 StrVel,F64 MaxVel,F64
Tacc,F64 Tdec);

I16 _7443_start_ta_arc_zu(I16 CardNo, F64 Cx, F64 Cy, F64 Ex, F64 Ey,
I16 DIR, F64 StrVel,F64 MaxVel,F64 Tacc,F64 Tdec);

I16 _7443_start_sr_arc_xy(I16 CardNo, F64 OffsetCx, F64 OffsetCy, F64
OffsetEx, F64 OffsetEy, I16 DIR, F64 StrVel,F64 MaxVel, F64
Tacc,F64 Tdec,F64 SVacc,F64 SVdec);

I16 _7443_start_sa_arc_xy(I16 CardNo, F64 Cx, F64 Cy, F64 Ex, F64 Ey,
I16 DIR, F64 StrVel,F64 MaxVel, F64 Tacc,F64 Tdec,F64
SVacc,F64 SVdec);

I16 _7443_start_sr_arc_zu(I16 CardNo, F64 OffsetCx, F64 OffsetCy, F64
OffsetEx, F64 OffsetEy, I16 DIR, F64 StrVel,F64 MaxVel, F64
Tacc,F64 Tdec,F64 SVacc,F64 SVdec);

I16 _7443_start_sa_arc_zu(I16 CardNo, F64 Cx, F64 Cy, F64 Ex, F64 Ey,
I16 DIR, F64 StrVel,F64 MaxVel, F64 Tacc,F64 Tdec,F64
SVacc,F64 SVdec);

Visual Basic (Windows 95/NT)
B_7443_start_a_arc_xy (ByVal CardNo As Integer, ByVal Cx As Double,

ByVal Cy As Double, ByVal Ex As Double, ByVal Ey As Double,
ByVal DIR As Integer, ByVal MaxVel As Double) As Integer

B_7443_start_r_arc_xy (ByVal CardNo As Integer, ByVal OffsetCx As
Double, ByVal OffsetCy As Double, ByVal OffsetEx As Double,
ByVal OffsetEy As Double, ByVal DIR As Integer, ByVal MaxVel As
Double) As Integer

B_7443_start_a_arc_zu (ByVal CardNo As Integer, ByVal Cx As Double,
ByVal Cy As Double, ByVal Ex As Double, ByVal Ey As Double,
ByVal DIR As Integer, ByVal MaxVel As Double) As Integer

B_7443_start_r_arc_zu (ByVal CardNo As Integer, ByVal OffsetCx As
Double, ByVal OffsetCy As Double, ByVal OffsetEx As Double,
ByVal OffsetEy As Double, ByVal DIR As Integer, ByVal MaxVel As
Double) As Integer

140 • Function Library

B_7443_start_a_arc2 (ByVal CardNo As Integer, AxisArray As Integer,
ByVal Cx As Double, ByVal Cy As Double, ByVal Ex As Double,
ByVal Ey As Double, ByVal DIR As Integer, ByVal MaxVel As
Double) As Integer

B_7443_start_r_arc2 (ByVal CardNo As Integer, AxisArray As Integer,
ByVal OffsetCx As Double, ByVal OffsetCy As Double, ByVal
OffsetEx As Double, ByVal OffsetEy As Double, ByVal DIR As
Integer, ByVal MaxVel As Double) As Integer

B_7443_start_tr_arc_xyu (ByVal CardNo As Integer, ByVal OffsetCx As
Double, ByVal OffsetCy As Double, ByVal OffsetEx As Double,
ByVal OffsetEy As Double, ByVal DIR As Integer, ByVal StrVel As
Double, ByVal MaxVel As Double, ByVal Tacc As Double) As
Integer

B_7443_start_ta_arc_xyu (ByVal CardNo As Integer, ByVal Cx As Double,
ByVal Cy As Double, ByVal Ex As Double, ByVal Ey As Double,
ByVal DIR As Integer, ByVal StrVel As Double, ByVal MaxVel As
Double, ByVal Tacc As Double) As Integer

B_7443_start_sr_arc_xyu (ByVal CardNo As Integer, ByVal OffsetCx As
Double, ByVal OffsetCy As Double, ByVal OffsetEx As Double,
ByVal OffsetEy As Double, ByVal DIR As Integer, ByVal StrVel As
Double, ByVal MaxVel As Double, ByVal Tacc As Double) As
Integer

B_7443_start_sa_arc_xyu (ByVal CardNo As Integer, ByVal Cx As Double,
ByVal Cy As Double, ByVal Ex As Double, ByVal Ey As Double,
ByVal DIR As Integer, ByVal StrVel As Double, ByVal MaxVel As
Double, ByVal Tacc As Double, ByVal SVacc As Double) As Integer

B_7443_start_tr_arc_yzu (ByVal CardNo As Integer, ByVal OffsetCx As
Double, ByVal OffsetCy As Double, ByVal OffsetEx As Double,
ByVal OffsetEy As Double, ByVal DIR As Integer, ByVal StrVel As
Double, ByVal MaxVel As Double, ByVal Tacc As Double) As
Integer

B_7443_start_ta_arc_yzu (ByVal CardNo As Integer, ByVal Cx As Double,
ByVal Cy As Double, ByVal Ex As Double, ByVal Ey As Double,
ByVal DIR As Integer, ByVal StrVel As Double, ByVal MaxVel As
Double, ByVal Tacc As Double) As Integer

B_7443_start_sr_arc_yzu (ByVal CardNo As Integer, ByVal OffsetCx As
Double, ByVal OffsetCy As Double, ByVal OffsetEx As Double,

ByVal OffsetEy As Double, ByVal DIR As Integer, ByVal StrVel As Double,
ByVal MaxVel As Double, ByVal Tacc As Double) As Integer

B_7443_start_sa_arc_yzu (ByVal CardNo As Integer, ByVal Cx As Double,
ByVal Cy As Double, ByVal Ex As Double, ByVal Ey As Double,
ByVal DIR As Integer, ByVal StrVel As Double, ByVal MaxVel As
Double, ByVal Tacc As Double, ByVal SVacc As Double) As Integer

B_7443_start_tr_arc2 (ByVal CardNo As Integer, AxisArray As Double,
ByVal OffsetCx As Double, ByVal OffsetCy As Double, ByVal
OffsetEx As Double, ByVal OffsetEy As Double, ByVal DIR As
Integer, ByVal StrVel As Double, ByVal MaxVel As Double, ByVal
Tacc As Double, ByVal Tdec As Double) As Integer

Function Library • 141

B_7443_start_ta_arc2 (ByVal CardNo As Integer, AxisArray As Double,
ByVal Cx As Double, ByVal Cy As Double, ByVal Ex As Double,
ByVal Ey As Double, ByVal DIR As Integer, ByVal StrVel As Double,
ByVal MaxVel As Double, ByVal Tacc As Double, ByVal Tdec As
Double) As Integer

B_7443_start_sr_arc2 (ByVal CardNo As Integer, AxisArray As Double,
ByVal OffsetCx As Double, ByVal OffsetCy As Double, ByVal
OffsetEx As Double, ByVal OffsetEy As Double, ByVal DIR As
Integer, ByVal StrVel As Double, ByVal MaxVel As Double, ByVal
Tacc As Double, ByVal Tdec As Double, ByVal SVacc As Double,
ByVal SVdec As Double) As Integer

B_7443_start_sa_arc2 (ByVal CardNo As Integer, AxisArray As Double,
ByVal Cx As Double, ByVal Cy As Double, ByVal Ex As Double,
ByVal Ey As Double, ByVal DIR As Integer, ByVal StrVel As Double,
ByVal MaxVel As Double, ByVal Tacc As Double, ByVal Tdec As
Double, ByVal SVacc As Double, ByVal SVdec As Double) As
Integer

B_7443_start_tr_arc_xy (ByVal CardNo As Integer, ByVal OffsetCx As
Double, ByVal OffsetCy As Double, ByVal OffsetEx As Double,
ByVal OffsetEy As Double, ByVal DIR As Integer, ByVal StrVel As
Double, ByVal MaxVel As Double, ByVal Tacc As Double, ByVal
Tdec As Double) As Integer

B_7443_start_ta_arc_xy (ByVal CardNo As Integer, ByVal Cx As Double,
ByVal Cy As Double, ByVal Ex As Double, ByVal Ey As Double,
ByVal DIR As Integer, ByVal StrVel As Double, ByVal MaxVel As
Double, ByVal Tacc As Double, ByVal Tdec As Double) As Integer

B_7443_start_tr_arc_zu (ByVal CardNo As Integer, ByVal OffsetCx As
Double, ByVal OffsetCy As Double, ByVal OffsetEx As Double,
ByVal OffsetEy As Double, ByVal DIR As Integer, ByVal StrVel As
Double, ByVal MaxVel As Double, ByVal Tacc As Double, ByVal
Tdec As Double) As Integer

B_7443_start_ta_arc_zu (ByVal CardNo As Integer, ByVal Cx As Double,
ByVal Cy As Double, ByVal Ex As Double, ByVal Ey As Double,
ByVal DIR As Integer, ByVal StrVel As Double, ByVal MaxVel As
Double, ByVal Tacc As Double, ByVal Tdec As Double) As Integer

B_7443_start_sr_arc_xy (ByVal CardNo As Integer, ByVal OffsetCx As
Double, ByVal OffsetCy As Double, ByVal OffsetEx As Double,
ByVal OffsetEy As Double, ByVal DIR As Integer, ByVal StrVel As
Double, ByVal MaxVel As Double, ByVal Tacc As Double, ByVal
Tdec As Double, ByVal SVacc As Double, ByVal SVdec As Double)
As Integer

B_7443_start_sa_arc_xy (ByVal CardNo As Integer, ByVal Cx As Double,
ByVal Cy As Double, ByVal Ex As Double, ByVal Ey As Double,
ByVal DIR As Integer, ByVal StrVel As Double, ByVal MaxVel As
Double, ByVal Tacc As Double, ByVal Tdec As Double, ByVal
SVacc As Double, ByVal SVdec As Double) As Integer

B_7443_start_sr_arc_zu (ByVal CardNo As Integer, ByVal OffsetCx As
Double, ByVal OffsetCy As Double, ByVal OffsetEx As Double,
ByVal OffsetEy As Double, ByVal DIR As Integer, ByVal StrVel As
Double, ByVal MaxVel As Double, ByVal Tacc As Double, ByVal
Tdec As Double, ByVal SVacc As Double, ByVal SVdec As Double)
As Integer

142 • Function Library

B_7443_start_sa_arc_zu (ByVal CardNo As Integer, ByVal Cx As Double,
ByVal Cy As Double, ByVal Ex As Double, ByVal Ey As Double,
ByVal DIR As Integer, ByVal StrVel As Double, ByVal MaxVel As
Double, ByVal Tacc As Double, ByVal Tdec As Double, ByVal
SVacc As Double, ByVal SVdec As Double) As Integer

@ Argument
CardNo: Card number designated to perform linear interpolation
OffsetCx : X-axis offset to center
OffsetCy : Y-axis offset to center
OffsetEx : X-axis offset to end of arc
OffsetEy : Y-axis offset to end of arc
Cx: specified X-axis absolute position of center
Cy: specified Y-axis absolute position of center
Ex: specified X-axis absolute position end of arc
Ey: specified Y-axis absolute position end of arc
DIR: Specified direction of arc, CW:0, CCW:1
StrVel : starting velocity of a velocity profile in unit of pulse per second
MaxVel : Tangential velocity in unit of pulse per second
Tacc : specified acceleration time in unit of second
Tdec : specified deceleration time in unit of second
SVacc : specified velocity interval in which S-curve acceleration is

performed.
Note: SVacc = 0, for pure S-curve

SVdec : specified velocity interval in which S-curve deceleration is
performed.
Note: SVdec = 0, for pure S-curve

AxisArray : Array of axis number to perform interpolation.
Example: Int AxisArray[2] = {0,2}; // axis 0 & 2

Int AxisArray[2] = {1,3}; // axis 1 & 3
Note: AxisArray[0] must be smaller than AxisArray[1]

@ Return Code

ERR_NoError
ERR_SpeedError
ERR_AxisArrayErrot

Function Library • 143

6.9 Home Return Mode

@ Name
_7443_set_home_config – Set the configuration for home return.
_7443_home_move – Perform a home return move.
_7443_escape_home – Escape Home Function
_7443_home_search –Auto-Search Home Switch (Without ORGOffset)
_7443_auto_home_search –Auto-Search Home Switch (With ORGOffset)

@ Description
_7443_set_home_config:

Configure the home return mode, origin & index signal(EZ) logic, EZ
count and ERC output options for home_move() function. Refer to
Section 4.1.8 for the setting of home_mode control.

_7443_home_move:
This function will cause the axis to perform a home return move
according to the setting of _7443_set_home_config() function. The
direction of moving is determined by the sign of velocity
parameter(svel, mvel). Since the stopping condition of this function is
determined by home_mode setting, user should take care to select
the initial moving direction. Or user should take care to handle the
condition when limit switch is touched or other conditions that is
possible causing the axis to stop. Executing v_stop() function during
home_move() can also cause the axis to stop.

_7443_escape_home:
After homing, use this function to leave home switch

_7443_home_search:
Auto-Search Home Switch.

@ Syntax

C/C++ (DOS, Windows 95/NT)
I16 _7443_set_home_config(I16 AxisNo, I16 home_mode, I16 org_logic,

I16 ez_logic, I16 ez_count, I16 erc_out);
I16 _7443_home_move(I16 AxisNo, F64 StrVel, F64 MaxVel, F64 Tacc);
I16 _7443_escape_home(I16 AxisNo, F64 SrVel,F64 MaxVel,F64 Tacc);
I16 _7443_home_search(I16 AxisNo, F64 StrVel, F64 MaxVel, F64 Tacc);
I16 _7443_auto_home_search(I16 AxisNo, F64 StrVel, F64 MaxVel, F64

Tacc, F64 ORGOffset);
Visual Basic (Windows 95/NT)

B_7443_set_home_config (ByVal AxisNo As Integer, ByVal home_mode As
Integer, ByVal org_logic As Integer, ByVal ez_logic As Integer,
ByVal ez_count As Integer, ByVal erc_out As Integer) As Integer

B_7443_home_move (ByVal AxisNo As Integer, ByVal StrVel As Double,
ByVal MaxVel As Double, ByVal Tacc As Double) As Integer

B_7443_escape_home(ByVal AxisNo As Integer, ByVal SrVel As Double,
ByVal MaxVel As Double, ByVal Tacc As Double) As Integer

B_7443_home_search(ByVal AxisNo As Integer, ByVal StrVel As Double,
ByVal MaxVel As Double, ByVal Tacc As Double)As Integer

144 • Function Library

B_7443_auto_home_search(ByVal AxisNo As Integer, ByVal StrVel As
Double, ByVal MaxVel As Double, ByVal Tacc As Double, ByVal
ORGOffset As Double)As Integer

@ Argument
AxisNo : axis number designated to configure and perform home returning
home_mode : stopping modes for home return, 0~12

(Please refer to section 4.1.8)
org_logic : Action logic configuration for ORG signal

org_logic=0, active low;
org_logic=1, active high

EZ_logic : Action logic configuration for EZ signal
EZ_logic=0, active low;
EZ_logic=1, active high.

ez_count : 0~15 (Please refer to section 4.1.8)
erc_out: Set ERC output options.

erc_out =0, no erc out;
erc_out =1, erc out when homing finish

StrVel : starting velocity of a velocity profile in unit of pulse per second
MaxVel : starting velocity of a velocity profile in unit of pulse per second
Tacc : specified acceleration time in unit of second
ORGOffset : The escape pulse amounts when home search touching the

ORG singal

@ Return Code

ERR_NoError

Function Library • 145

6.10 Manual Pulser Motion

@ Name
_7443_set_pulser_iptmode - set the input signal modes of pulser
_7443_pulser_vmove – manual pulser v_move
_7443_pulser_pmove – manual pulser p_moce
_7443_pulser_home_move – manual pulser home move
_7443_set_pulser_ratio –Set manual pulser ratio for actual output pulse rate.
_7443_pulser_r_line2 –Pulser mode for 2-axis linear interpolation
_7443_pulser_r_arc2 –Pulser mode for 2-axis arc interpolation

@ Description
_7443_set_pulser_iptmode:

This function is used to configure the input mode of manual pulser.
_7443_pulser_vmove:

As this command is written, the axis begins to move the axis
according to manual pulser input. The axis will output one pulse
when receive one pulse from pulser, until the sd_stop or emg_stop
command is written.

_7443_pulser_pmove:
As this command is written, the axis begins to move the axis
according to manual pulser input. The axis will output one pulse
when receive one pulse from pulser, until the sd_stop or emg_stop
command is written or the output pulse number reach dist.

_7443_pulser_home_move:
As this command is written, the axis begins to move the axis

according to manual pulser input. The axis will output one pulse when
receive one pulse from pulser, until the sd_stop or emg_stop
command is written or the home move finish.

_7443_set_pulser_ratio:
Set manual pulser ratio for actual output pulse rate. The formula for

pulser output rate is
Output Pulse Speed=(PA_PB Speed) * 4 * (PMG+1)*PDV/2048
The PDV=0~10 Divide Factor
The PMG=0~4 Multi Factor

_7443_set_pulser_ratio:
Pulser mode for 2-axis linear interpolation (relative mode only).

_7443_pulser_r_arc2:
Pulser mode for 2-axis arc interpolation (relative mode only)

146 • Function Library

@ Syntax

C/C++ (DOS, Windows 95/NT)
I16 _7443_set_pulser_iptmode(I16 AxisNo,I16 InputMode, I16 Inverse);
I16 _7443_pulser_vmove(I16 AxisNo, F64 SpeedLimit);
I16 _7443_pulser_pmove(I16 AxisNo, F64 Dist, F64 SpeedLimit);
I16 _7443_pulser_home_move(I16 AxisNo, I16 HomeType, F64

SpeedLimit);
I16 _7443_set_pulser_ratio(I16 AxisNo,I16 PDV, I16 PMG);
I16 _7443_pulser_r_line2(I16 CardNo,I16 *AxisArray, F64 DistX, F64 DistY,

F64 SpeedLimit);
I16 _7443_pulser_r_arc2(I16 CardNo, I16 *AxisArray, F64 OffsetCx, F64

OffsetCy, F64 OffsetEx, F64 OffsetEy, I16 DIR, F64 MaxVel);

Visual Basic (Windows 95/NT)
B_7443_set_pulser_iptmode (ByVal AxisNo As Integer, ByVal InputMode

As Integer, ByVal Inverse As Integer) As Integer
B_7443_pulser_vmove (ByVal AxisNo As Integer, ByVal SpeedLimit As

Double) As Integer
B_7443_pulser_pmove (ByVal AxisNo As Integer, ByVal Dist As Double,

ByVal SpeedLimit As Double) As Integer
B_7443_pulser_home_move (ByVal AxisNo As Integer, ByVal HomeType

As Integer, ByVal SpeedLimit As Double) As Integer
B_7443_set_pulser_ratio(ByVal AxisNo As Integer, ByVal PDV As Integer,

ByVal PMG As Integer) As Integer
B_7443_pulser_r_line2(ByVal CardNo As Integer, AxisArray As Integer,

ByVal DistX As Double, ByVal DistY As Double, ByVal SpeedLimit
As Double) As Integer

B_7443_pulser_r_arc2(ByVal CardNo As Integer, AxisArray As Integer,
ByVal OffsetCx As Double, ByVal OffsetCy As Double, ByVal
OffsetEx As Double, ByVal OffsetEy As Double, ByVal DIR As
Integer, ByVal MaxVel As Double) As Integer

Function Library • 147

@ Argument
AxisNo : axis number designated to start manual move
InputMode : setting of manual pulser input mode from PA and PB pins

ipt_mode=0, 1X AB phase type pulse input.
ipt_mode=1, 2X AB phase type pulse input.
ipt_mode=2, 4X AB phase type pulse input.
ipt_mode=3, CW/CCW type pulse input.

Inverse : Reverse the moving direction from pulse direction
Inverse =0, no inverse
Inverse =1, Reverse moving direction

SpeedLimit : The maximum speed in pulser move.
For example, if SpeedLimit is set to be 100 pps, then the axis

can move at fastest 100 pps , even the input pulser
signal rate is more then 100 pps.

Dist : specified relative distance to move
HomeType : specified home move type

HomeType =0, Command Origin.(that means axis stops
when command counter becomes ‘0’)
HomeType =1, ORG pin.

PDV, PMG: Divide and Multi Factor.
PDV=0~10 Divide Factor
PMG=0~4 Multi Factor

The Output Pulse Speed=(PA_PB Speed) * 4 * (PMG+1)*PDV/2048
DistX : specified relative distance of axis 0 to move
DistY : specified relative distance of axis 1 to move
OffsetCx : X-axis offset to center
OffsetCy : Y-axis offset to center
OffsetEx : X-axis offset to end of arc
OffsetEy : Y-axis offset to end of arc
DIR: Specified direction of arc, CW:0 , CCW:1
SpeedLimit : Maximum tangential velocity in unit of pulse per second
MaxVel : Maximum tangential velocity in unit of pulse per second

@ Return Code

ERR_NoError
ERR_PulserHomeTypeError

148 • Function Library

6.11 Motion Status

@ Name
_7443_motion_done – Return the motion status

@ Description
_7443_motion_done:

Return the motion status of PPCI7443.

@ Syntax

C/C++ (DOS, Windows 95/NT)
I16 _7443_motion_done(I16 AxisNo);

Visual Basic (Windows 95/NT)
B_7443_motion_done (ByVal AxisNo As Integer) As Integer

@ Argument
AxisNo : axis number designated to start manual move

@ Return Value
0 Stop
1 Reserved
2 Reserved
3 Reserved
4 Wait other axis
5 Wait ERC finished
6 Wait DIR Change
7 Backlash compensating
8 Wait PA/PB
9 In home special speed motion
10 In start velocity motion
11 In acceleration
12 In Max velocity motion
13 In deceleration
14 Wait INP
15 Other axis us still moving

Function Library • 149

6.12 Motion Interface I/O

@ Name
_7443_set_alm – Set alarm logic and operating mode
_7443_set_el – Set EL logic and operating mode
_7443_set_inp– Set Inp logic and operating mode
_7443_set_erc– Set ERC logic and timing
_7443_set_servo – Set state of general purpose output pin
_7443_set_sd – Set SD logic and operating mode

@ Description
_7443_set_alm_logic:

Set the active logic of ALARM signal input from servo driver. Two
reacting modes are available when ALARM signal is active.

_7443_set_el:
Set the reacting modes of EL signal.

_7443_set_inp_logic:
Set the active logic of In-Position signal input from servo driver.
Users can select whether they want to enable this function. Default
state is disabled.

_7443_set_erc:
You can set the logic and on time of ERC by this function.

_7443_set_servo:
You can set the ON-OFF state of SVON signal by this function. The
default value is 1(OFF), which means the SVON is open to GND.

_7443_set_sd_logic:
Set the active logic, latch control and operating mode of SD signal
input from mechanical system. Users can select whether they want
to enable this function. Default state is disabled.

@ Syntax

C/C++ (DOS, Windows 95/NT)
I16 _7443_set_alm(I16 AxisNo, I16 alm_logic, I16 alm_mode);
I16 _7443_set_el(I16 AxisNo, I16 el_mode);
I16 _7443_set_inp(I16 AxisNo, I16 inp_enable, I16 inp_logic);
I16 _7443_set_erc(I16 AxisNo, I16 erc_logic, I16 erc_on_time);
I16 _7443_set_servo(I16 AxisNo, I16 on_off);
I16 _7443_set_sd(I16 AxisNo, I16 enable, I16 sd_logic, I16 sd_latch, I16

sd_mode);
Visual Basic (Windows 95/NT)

B_7443_set_alm (ByVal AxisNo As Integer, ByVal alm_logic As Integer,
ByVal alm_mode As Integer) As Integer

B_7443_set_el (ByVal AxisNo As Integer, ByVal el_mode As Integer) As
Integer

B_7443_set_inp (ByVal AxisNo As Integer, ByVal inp_enable As Integer,
ByVal inp_logic As Integer) As Integer

B_7443_set_erc (ByVal AxisNo As Integer, ByVal erc_logic As Integer,
ByVal erc_on_time As Integer) As Integer

B_7443_set_servo (ByVal AxisNo As Integer, ByVal On_Off As Integer) As
Integer

150 • Function Library

B_7443_set_sd (ByVal AxisNo As Integer, ByVal enable As Integer, ByVal
sd_logic As Integer, ByVal sd_latch As Integer, ByVal sd_mode As
Integer) As Integer

@ Argument
AxisNo : axis number designated to configure
alm_logic : setting of active logic for ALARM signal

alm_logic=0, active LOW.
alm_logic=1, active HIGH.

alm_mode : reacting modes when receiving ALARM signal.
alm_mode=0, motor immediately stops(Default)
alm_mode=1, motor decelerates then stops.

el_mode: reacting modes when receiving EL signal.
el_mode=0, motor immediately stops.(Default)
el_mode=1, motor decelerates then stops.

inp_enable : INP function enable/disable
inp_enable=0, Disabled (Default)
inp_enable=1, Enabled

inp_logic : setting of active logic for INP signal
inp_logic=0, active LOW.
inp_logic=1, active HIGH.

erc_logic: setting of active logic for ERC signal
erc_logic=0, active LOW.
erc_logic=1, active HIGH.

erc_on_time: Setting of time length of ERC active
erc_on_time=0 12us
erc_on_time=1 102us
erc_on_time=2 409us
erc_on_time=3 1.6ms
erc_on_time=4 13ms
erc_on_time=5 52ms
erc_on_time=6 104ms

on_off: ON-OFF state of SVON signal
on_off = 0 , ON
on_off = 1 , OFF

enable: Enable/disable the SD signal.
enable=0, Disabled (Default)
enable=1, Enabled

sd_logic: setting of active logic for SD signal
sd_logic=0, active LOW.
sd_logic=1, active HIGH.

sd_latch : setting of latch control for SD signal
sd_latch=0, do not latch.
sd_latch=1, latch.

sd_mode: setting the reacting mode of SD signal
sd_mode=0, slow down only
sd_mode=1, slow down then stop

@ Return Code

ERR_NoError

Function Library • 151

6.13 Motion I/O Monitoring

@ Name
_7443_get_io_status –Get all the motion I/O status of PPCI7443

@ Description
_7443_get_io_status:

Get all the I/O status for each axis. The definition for each bit is as
following:

Bit Name Description
0 RDY RDY pin input
1 ALM Alarm Signal
2 +EL Positive Limit Switch
3 -EL Negative Limit Switch
4 ORG Origin Switch
5 DIR DIR output
6 Reserved
7 PCS PCS signal input
8 ERC ERC pin output
9 EZ Index signal
10 Reserved
11 Latch Latch signal input
12 SD Slow Down signal input
13 INP In-Position signal input
14 SVON Servo-ON output status

@ Syntax

C/C++ (DOS, Windows 95/98/NT)
I16 _7443_get_io_status(I16 AxisNo, U16 *io_sts);

Visual Basic (Windows 95/NT)
B_7443_get_io_status (ByVal AxisNo As Integer, io_sts As Integer) As

Integer

@ Argument
AxisNo : axis number for I/O control and monitoring
*io_status : I/O status word. Where “1’ is ON and “0” is OFF. ON/OFF state

is read based on the corresponding set logic.

@ Return Code

ERR_NoError

152 • Function Library

6.14 Interrupt Control

@ Name
_7443_int_control – Enable/Disable INT service
_7443_set_int_factor – Set INT factor
_7443_int_enable – Enable event (For Window only)
_7443_int_disable – Disable event (For Window only)
_7443_get_int_status – Get INT Status (For Window only)
_7443_link_interrupt – Set link to interrupt call back function (For Window only)
_7443_get_int_type – Get INT type (For DOS only)
_7443_enter_isr – Enter interrupt service routine (For DOS only)
_7443_leave_isr – Leave interrupt service routine (For DOS only)
_7443_get_event_int – Get event status (For DOS only)
_7443_get_error_int – Get error status (For DOS only)
_7443_get_irq_status – Get IRQ status (For DOS only)
_7443_not_my_irq – Not My IRQ (For DOS only)
_7443_isr0~9, a, b – Interrupt service routine (For DOS only)
_7443_set_axis_stop_int – enable axis stop int
_7443_mask_axis_stop_int – mask axis stop int

@ Description
_7443_int_control:

This function is used to enable interrupt generating to host PC.
_7443_set_int_factor:

This function allows users to select factors to initiate the event int.
The error can never be masked once the interrupt service is turn on
by _7443_int_control().
The int status of PPCI7443 is composed of two independent parts:
error_int_status and event_int_status . The event_int_status
recodes the motion and comparator event under normal operation ,
and this kind of INT status can be masked by
_7443_set_int_factor() . The error_int_status is for abnormal stop of
PPCI7443, for example: EL, ALM …etc. This kind of INT cannot be
masked. The following is the definition of these two int_status. By
setting the relative bit as 1, PPCI7443 can generate INT signal to
host PC.

Function Library • 153

Bit Description
0 Normal Stop
1 Next command continued
2 Command pre-register 2 is empty
3 (Reserved)
4 Acceleration Start
5 Acceleration End
6 Deceleration Start
7 Deceleration End
8 (Reserved)
9 (Reserved)

10 (Reserved)
11 General Comparator compared
12 Compared triggered for axis 0,1
13 (Reserved)
14 Latched for axis2,3
15 ORG on
16 SD on
17 (Reserved)
18 (Reserved)
19 CSTA, Sync. Start on

20~31 (Reserved)

_7443_int_enable : (For Window only.)
This function is used to assign the window INT event.

_7443_int_disable: (For Window only.)
This function is used to disable the window INT event.

_7443_get_int_status: (For Window only.)
This function allows user to identify what cause the interrupt signal.
After user gets this value, the status register will be cleared to 0. The
return value is two 32 bits unsigned integers. The first one is for
error_int_status, which is not able to mask by _7443_set_int_factor().
The definition for bit of error_int_status is as following:

154 • Function Library

error_int_status : can not be masked
Bit Interrupt Factor
0 +SL Stop
1 -SL Stop
2 (Reserved)
3 General Comparator Stop
4 (Reserved)
5 +EL
6 -EL
7 ALM
8 (Reserved)
9 (Reserved)

10 SD on then stop
11 (Reserved)
12 Interpolation Error and stop
13 Other Axis stop on Interpolation
14 Pulser input buffer overflow and stop
15 Interpolation counter overflow
16 Encoder input signal error
17 Pulser input signal error

18~31 (Reserved)
The second is for event_int_status, which can be masked by
_7443_set_int_factor(). The definition for bit of event_int_status is as
following:

event_int_status : can be masked by function call
_7443_int_ factor()

Bit Description
0 Normal Stop
1 Next command continued
2 Continuous pre-register is empty and allow

users to fill new command
3 (Reserved)
4 Acceleration Start
5 Acceleration End
6 Deceleration Start
7 Deceleration End
8 (Reserved)
9 (Reserved)

10 Step-losing occur
11 General Comparator compared
12 Compared triggered for axis 0,1
13 (Reserved)
14 Latched for axis2,3

Function Library • 155

15 ORG on
16 SD on
17 (Reserved)
18 (Reserved)
19 CSTA, Sync. Start on

17~31 (Reserved)

_7443_link_interrupt: (For Window only.)
This function is used to link interrupt call back function.

_7443_get_int_type: (This function is for DOS only)
This function is used to detect which kind of INT occurred.

_7443_enter_isr: (This function is for DOS only)
This function is used to inform system that process is now entering
interrupt service routine.

_7443_leave_isr: (This function is for DOS only)
This function is used to inform system that process is now leaving
interrupt service routine.

_7443_get_event_int: (This function is for DOS only)
This function is used to get event_int_status.

_7443_get_error_int: (This function is for DOS only)
This function is used to get error_int_status.

_7443_get_irq_status: (This function is for DOS only)
This function allows user to confirm if the designated card generates
the INT signal to host PC.

_7443_not_my_irq: (This function is for DOS only)
This function must be called after knowing not the designated card
generates the INT signal to host PC.

_7443_isr0, _7443_isr1, _7443_isr2, _7443_isr3, ….. _7443_isr9,
_7443_isra, _7443_isrb: (Theses function is for DOS only)

Individual Interrupt service routine for card 0~11.
_7443_set_axis_stop_int

This function will enable an axis stop interrupt factor. Once it is
enabled, the interrupt will happen no matter it is normal stop or error
stop. This interrupt condition can be turned on or off accompanied
every motion command by setting _7443_mask_axis_stop_int(). This
kind of interrupt condition is different from _7443_set_int_factor(). It
can be controlled in each motion command, very useful in continuous
motion when users need only final command has interrupt.

_7443_mask_axis_stop_int
This function will affect axis stop interrupt factor which is set by
_7443_set_axis_stop_int().

156 • Function Library

@ Syntax

C/C++ (DOS)
I16 _7443_int_control(U16 cardNo, U16 intFlag);
I16 _7443_set_int_factor(I16 AxisNo, U32 int_factor);
I16 _7443_get_int_type(I16 AxisNo, U16 *int_type);
I16 _7443_enter_isr(I16 AxisNo);
I16 _7443_leave_isr(I16 AxisNo);
I16 _7443_get_event_int(I16 AxisNo, U32 *event_int);
I16 _7443_get_error_int(I16 AxisNo, U32 *error_int);
I16 _7443_get_irq_status(U16 cardNo, U16 *sts);
I16 _7443_not_my_irq(I16 CardNo);
void interrupt _7443_isr0 (void);
void interrupt _7443_isr1 (void);
void interrupt _7443_isr2 (void);
void interrupt _7443_isr3 (void);
void interrupt _7443_isr4 (void);
void interrupt _7443_isr5 (void);
void interrupt _7443_isr6 (void);
void interrupt _7443_isr7 (void);
void interrupt _7443_isr8 (void);
void interrupt _7443_isr9 (void);
void interrupt _7443_isra (void);
void interrupt _7443_isrb (void);

C/C++ (Windows 95/98/NT)
I16 _7443_int_control(U16 cardNo, U16 intFlag);
I16 _7443_set_int_factor(I16 AxisNo, U32 int_factor);
I16 _7443_int_enable(I16 CardNo, HANDLE *phEvent);
I16 _7443_int_disable(I16 CardNo);
I16 _7443_get_int_status(I16 AxisNo, U32 *error_int_status, U32

*event_int_status);
I16 _7443_link_interrupt(I16 CardNo, void (__stdcall *callbackAddr)(I16

IntAxisNoInCard));
I16 _7443_set_axis_stop_int(I16 AxisNo, I16 axis_stop_int);
I16 _7443_mask_axis_stop_int(I16 AxisNo, I16 int_disable);

Visual Basic (Windows 95/NT)
B_7443_int_control (ByVal CardNo As Integer, ByVal intFlag As Integer) As

Integer
B_7443_set_int_factor (ByVal AxisNo As Integer, ByVal int_factor As Long)

As Integer
B_7443_int_enable (ByVal CardNo As Integer, phEvent As Long) As

Integer
B_7443_int_disable (ByVal CardNo As Integer) As Integer
B_7443_get_int_status (ByVal AxisNo As Integer, error_int_status As Long,

event_int_status As Long) As Integer
B_7443_link_interrupt (ByVal CardNo As Integer, ByVal lpCallBackProc As

Long) As Integer
B_7443_mask_axis_stop_int (ByVal AxisNo As Integer, ByVal int_disable

As Integer) As Integer
B_7443_set_axis_stop_int (ByVal AxisNo As Integer, ByVal axis_stop_int

As Integer) As Integer

Function Library • 157

@ Argument
cardNo : card number 0,1,2,3…
AxisNo : axis number 0,1,2,3,4…
intFlag : int flag, 0 or 1 (0: Disable, 1:Enable)
int_factor : interrupt factor, refer to previous table
*int_type: Interrupt type, (1: error int, 2: event int, 3: both happened)
*event_int: event_int_status, , refer to previous table
*error_int: error_int_status, refer to previous table
*sts: (0: not this card’s IRQ, 1: this card’s IRQ)
*phEvent: event handler (Windows)
*error_int_status : refer to previous table
*event_int_status: refer to previous table
int_disable : (0:make axis stop interrupt active, 1:make axis stop interrupt

in-active)
axis_stop_int : (0: disable axis stop interrupt factor, 1: enable axis stop

interrupt factor)

@ Return Code

ERR_NoError
ERR_EventNotEnableYet
ERR_LinkIntError
ERR_CardNoErrot

158 • Function Library

6.15 Position Control and Counters

@ Name
_7443_get_position – Get the value of feedback position counter
_7443_set_position – Set the feedback position counter
_7443_get_command – Get the value of command position counter
_7443_set_command – Set the command position counter
_7443_get_error_counter – Get the value of position error counter
_7443_reset_error_counter – Reset the position error counter
_7443_get_general_counter – Get the value of general counter
_7443_set_general_counter – Set the general counter
_7443_get_target_pos – Get the value of target position recorder
_7443_reset_target_pos – Reset target position recorder
_7443_get_rest_command – Get remaining pulse till end of motion
_7443_check_rdp – Get the ramping down point data

@ Description
_7443_get_position():

This function is used to read the value of feedback position counter.
Note, this value has already been processed by move ratio. If move
ratio is 0.5, than the value read will be twice as the counter value.
The source of feedback counter is selectable by function
_7443_set_feedback_src() to be external EA/EB or pulse output of
PPCI7443.

_7443_set_position():
This function is used to change the feedback position counter to the
specified value. Note, the value to be set will be processed by move
ratio. If move ratio is 0.5, than the set value will be twice as given
value.

_7443_get_command():
This function is used to read the value of command position counter.
The source of command position counter is the pulse output of
PPCI7443.

_7443_set_command():
This function is used to change the value of command position
counter.

_7443_get_error_counter():
This function is used to read the value of position error counter.

_7443_reset_error_counter():
This function is used to clear position error counter.

_7443_get_general_counter():
This function is used to read the value of general counter.

_7443_set_general_counter():
This function is used to set the counting source of and change the
value of general counter. (By default, the source is pulser input.)

Function Library • 159

_7443_get_target_pos():
This function is used to read the value of target position recorder.
The target position recorder is maintained by PPCI7443 software
driver. It records the position to settle down for current running
motion.

_7443_reset_target_pos():
This function is used to set new value for target position recorder. It
is necessary to call this function when home return completion or
when new feedback counter value is set by function
_7443_set_position().

_7443_get_rest_command():
This function is used to read remaining pulse counts till end of
current motion.

_7443_check_rdp():
This function is used to read the ramping down point data. The
ramping down point is the position where deceleration starts. The
data is stored as pulse count, and it cause the axis start to
decelerate when remaining pulse count reach the data.

@ Syntax

C/C++ (DOS, Windows 95/98/NT)
I16 _7443_get_position(I16 AxisNo, F64 *pos);
I16 _7443_set_position(I16 AxisNo, F64 pos);
I16 _7443_get_command(I16 AxisNo, I32 *cmd);
I16 _7443_set_command(I16 AxisNo, I32 cmd);
I16 _7443_get_error_counter(I16 AxisNo, I16 *error_counter);
I16 _7443_reset_error_counter(I16 AxisNo);
I16 _7443_get_general_counter(I16 AxisNo, F64 *CntValue);
I16 _7443_set_general_counter(I16 AxisNo,I16 CntSrc, F64 CntValue);
I16 _7443_get_target_pos(I16 AxisNo, F64 *T_pos);
I16 _7443_reset_target_pos(I16 AxisNo, F64 T_pos);
I16 _7443_get_rest_command(I16 AxisNo, I32 *rest_command);
I16 _7443_check_rdp(I16 AxisNo, I32 *rdp_command);

160 • Function Library

Visual Basic (Windows 95/NT)
B_7443_get_position (ByVal AxisNo As Integer, Pos As Double) As Integer
B_7443_set_position (ByVal AxisNo As Integer, ByVal Pos As Double) As

Integer
B_7443_get_command (ByVal AxisNo As Integer, cmd As Long) As Integer
B_7443_set_command (ByVal AxisNo As Integer, ByVal cmd As Long) As

Integer
B_7443_get_error_counter (ByVal AxisNo As Integer, error_counter As

Integer) As Integer
B_7443_reset_error_counter (ByVal AxisNo As Integer) As Integer
B_7443_get_general_counter (ByVal AxisNo As Integer, CntValue As

Double) As Integer
B_7443_set_general_counter (ByVal AxisNo As Integer, ByVal CntSrc As

Integer, ByVal CntValue As Double) As Integer
B_7443_get_target_pos (ByVal AxisNo As Integer, Pos As Double) As

Integer
B_7443_reset_target_pos (ByVal AxisNo As Integer, ByVal Pos As Double)

As Integer
B_7443_get_rest_command (ByVal AxisNo As Integer, rest_command As

Long) As Integer
B_7443_check_rdp (ByVal AxisNo As Integer, rdp_command As Long) As

Integer

@ Argument
AxisNo : Axis number
Pos, *Pos: Feedback position counter value,

range: -134217728~134217727
cmd, *cmd: Command position counter value,

range: -134217728~134217727
error_counter, *error_counter: Position error counter value,

range: -32768~32767
T_pos, *T_pos: Target position recorder value,

T_ range: -134217728~134217727
CntValue, * CntValue: General counter value,

range: -134217728~134217727
rest_command, *rest_command: Rest pulse count till end,

range: -134217728~134217727
rdp_command, *rdp_command: Ramping down point data

range: 0~167777215
CntSrc : Source of general counter

0 : command
1: EA/EB
2: PA/PB (Default)
3: CLK/2

@ Return Code

ERR_NoError
ERR_PosOutofRange

Function Library • 161

6.16 Position Compare and Latch

@ Name
_7443_set_ltc_logic – Set the LTC logic
_7443_get_latch_data – Get latched counter data
_7443_set_soft_limit – Set soft limit
_7443_enable_soft_limit – Enable soft limit function
_7443_disable_soft_limit – Disable soft limit function
_7443_set_error_counter_check – Step-losing detection setup
_7443_set_general_comparator – Set general-purposed comparator
_7443_set_trigger_comparator – Set trigger comparator
_7443_set_trigger_type – Set the trigger output type
_7443_check_compare_data – Check current comparator data
_7443_check_compare_status – Check current comparator status
_7443_set_auto_compare – Set comparing data source for auto loading
_7443_build_compare_function – Build compare data via constant interval
_7443_build_compare_table – Build compare data via compare table
_7443_cmp_v_change – Speed change by comparator
_7443_set_enable_inp – Set latch signal

@ Description
_7443_set_ltc_logic():

This function is used to set the logic of latch input. This function is
applicable only for last two axes in every PPCI7443 card.

_7443_get_latch_data():
After the latch signal arrived, this function is used to read the latched
value of counters.

_7443_set_soft_limit ():
This function is used to set the value of soft limit.

_7443_enable_soft_limit (),_7443_disable_soft_limit() :
These two functions are used to enable/disable the soft limit function.
Once enabled, the action of soft limit will be exactly the same as
physical limit.

_7443_set_error_counter_check() :
This function is used to enable the step losing checking facility. By
giving an tolerance value, the PPCI7443 will generate an interrupt
(event_int_status , bit 10) when position error counter exceed
tolerance.

_7443_set_general_comparator ():
This function is used to set the source and comparing value for
general comparator. When the source counter value reached the
comparing value, the PPCI7443 will generate an interrupt
(event_int_status , bit 11).

_7443_set_trigger_comparator():
This function is used to set the comparing method and value for
trigger comparator. When the feedback position counter value
reached the comparing value, the PPCI7443 will generate trigger a

162 • Function Library

pulse output via CMP and an interrupt (event_int_status , bit 12) will
also be sent to host PC. If _7443_set_auto_compare is used, then
comparing value set by this function will be ignored automatically.
Note: it is applicable only for first two axes in every PPCI7443 card.

_7443_set_trigger_type():
This function is used to set the trigger output mode.
In hardware A2 version, it is used for setting the output pulse as one
shot or constant on.
In hardware A3 version, it is used for setting the output pulse as
normal high or normal low.

_7443_check_compare_data():
This function is used to get current comparing data of designated
comparator.

_7443_check_compare_status():
This function is used to get status of all comparator. When some
comparator comes into existence, the relative bit of cmp_sts will
become ‘1’, otherwise ‘0’.

_7443_set_auto_compare():
This function is used to set the comparing data source of trigger
comparator. The source can be either a function or a table.

_7443_build_compare_function():
This function is used to build comparing function by defining the start
/ end point and interval. There is no limitation on the max number of
comparing data. It will automatically load a final point after user’s end
point. That is (end point + Interval x total points) x move ratio
Note: Please turn off all interrupt function, when triggering is
running.

_7443_build_compare_table():
This function is used to build comparing table by defining data array.
The size of array is limited to 1024, when using RAM mode.
Note: Please turn off all interrupt function, when triggering is
running.

_7443_cmp_v_change():
This function is used to setup comparator velocity change function. It
is in fact a V_change function but acts when general comparator
comes into existence. When this function is issued, the parameter
“CmpAction” of _7443_set_general_comparator() must be set ‘3’.
The compare data is also set by _7443_set_general_comparator() .
While, the remain distance, the compare point’s velocity , the new
velocity and the acceleration time are set by
_7443_cmp_v_change() .

_7443_set_enable_inp():
This function is used to setup latched signal

Function Library • 163

@ Syntax

C/C++ (DOS, Windows 95/98/NT)
I16 _7443_set_ltc_logic(I16 AxisNo_2or3, I16 ltc_logic);
I16 _7443_get_latch_data(I16 AxisNo, I16 LatchNo, F64 *Pos);
I16 _7443_set_soft_limit(I16 AxisNo, I32 PLimit, I32 NLimit);
I16 _7443_disable_soft_limit(I16 AxisNo);
I16 _7443_enable_soft_limit(I16 AxisNo, I16 Action);
I16 _7443_set_error_counter_check(I16 AxisNo, I16 Tolerance, I16

On_Off);
I16 _7443_set_general_comparator(I16 AxisNo, I16 CmpSrc, I16

CmpMethod, I16 CmpAction, F64 Data);
I16 _7443_set_trigger_comparator(I16 AxisNo, I16 CmpSrc, I16

CmpMethod, F64 Data);
I16 _7443_set_trigger_type(I16 AxisNo, I16 TriggerType);
I16 _7443_check_compare_data(I16 AxisNo, I16 CompType, F64 *Pos);
I16 _7443_check_compare_status(I16 AxisNo, U16 *cmp_sts);
I16 _7443_set_auto_compare(I16 AxisNo ,I16 SelectSrc);
I16 _7443_cmp_v_change(I16 AxisNo, F64 Res_dist, F64 oldvel, F64

newvel, F64 AccTime)
I16 _7443_set_enable_inp(I16 AxisNo, I16 inp_enable);

C/C++ (Windows 95/98/NT)
I16 _7443_build_compare_function(I16 AxisNo, F64 Start, F64 End, F64

Interval, I16 Device);
I16 _7443_build_compare_table(I16 AxisNo, F64 *TableArray, I16 Size, I16

Device);
C/C++ (Dos)

I16 _7443_build_compare_function(I16 AxisNo, F64 Start, F64 End, F64
Interval);

I16 _7443_build_compare_table(I16 AxisNo, F64 *TableArray, I16 Size);
Visual Basic (Windows 95/NT)

B_7443_set_ltc_logic (ByVal AxisNo As Integer, ByVal ltc_logic As Integer)
As Integer

B_7443_get_latch_data (ByVal AxisNo As Integer, ByVal Counter As
Integer, Pos As Double) As Integer

B_7443_set_soft_limit (ByVal AxisNo As Integer, ByVal PLimit As Long,
ByVal NLimit As Long) As Integer

B_7443_disable_soft_limit (ByVal AxisNo As Integer) As Integer
B_7443_enable_soft_limit (ByVal AxisNo As Integer, ByVal Action As

Integer) As Integer
B_7443_set_error_counter_check (ByVal AxisNo As Integer, ByVal

Tolerance As Integer, ByVal On_Off As Integer) As Integer
B_7443_set_general_comparator (ByVal AxisNo As Integer, ByVal CmpSrc

As Integer, ByVal CmpMethod As Integer, ByVal CmpAction As
Integer, ByVal Data As Double) As Integer

B_7443_set_trigger_comparator (ByVal AxisNo As Integer, ByVal CmpSrc
As Integer, ByVal CmpMethod As Integer, ByVal Data As Double)
As Integer

B_7443_set_trigger_type (ByVal AxisNo As Integer, ByVal TriggerType As
Integer) As Integer

B_7443_check_compare_data (ByVal AxisNo As Integer, ByVal
CompType As Integer, Pos As Double) As Integer

164 • Function Library

B_7443_check_compare_status (ByVal AxisNo As Integer, cmp_sts As
Integer) As Integer

B_7443_set_auto_compare (ByVal AxisNo As Integer, ByVal SelectSrc As
Integer) As Integer

B_7443_build_compare_function (ByVal AxisNo As Integer, ByVal Start As
Double, ByVal End As Double, ByVal Interval As Double, ByVal
Device As Integer) As Integer

B_7443_build_compare_table (ByVal AxisNo As Integer, TableArray As
Double, ByVal Size As Integer, ByVal Device As Integer) As Integer

B_7443_cmp_v_change(ByVal AxisNo, ByVal Res_dist as Double, ByVal
oldvel as Double, ByVal newvel as Double, ByVal AccTime as
Double)

B_7443_set_enable_inp (ByVal AxisNo As Integer, ByVal inp_enable As
Integer) As Integer

@ Argument
AxisNo_2or3 : Axis number, for last two axes in one card
ltc_logic: 0 means active low, 1 means active high
AxisNo: Axis number
LatchNo or Counter: Specified Counter to latch

Counter = 1 , Command counter
Counter = 2 , Feedback counter
Counter = 3 , Error Counter
Counter = 4 , General Counter

Pos: Latched counter value,
PLimit: Soft limit value in positive direction
NLimit: Soft limit value in negative direction
Action: The reacting method of soft limit

Action =0, INT only
Action =1, Immediately stop
Action =2, slow down then stop
Action =3, reserved

Tolerance: The tolerance of step-losing detection
On_Off: Enable / Disable step-losing detection

On_Off =0, Disable
On_Off =1, Enable

CmpSrc: The comparing source counter
CmpSrc =0, Command Counter
CmpSrc =1, Feedback Counter
CmpSrc =2, Error Counter
CmpSrc =3, General Counter

CmpMethod: The comparing method
CmpMethod =0, No compare
CmpMethod =1, CmpValue=Counter (Directionless)
CmpMethod =2, CmpValue=Counter (+Dir)
CmpMethod =3, CmpValue=Counter (-Dir)
CmpMethod =4, CmpValue>Counter
CmpMethod =5, CmpValue<Counter

Function Library • 165

CmpAction: The reacting mode when comparison comes into exist
CmpAction =0, INT only
CmpAction =1, Immediately stop
CmpAction =2, slow down then stop
CmpAction =3, speed change

Data: Comparing value,
TriggerType : Selection of type of trigger output mode

Hardware Version A2
TriggerType =0, one shoot (default)
TriggerType =1, constant high

Hardware Version A3
TriggerType =0, normal high (default)
TriggerType =1, normal low

CompType : Selection of type of comparator
CompType =1, + Soft Limit
CompType =2, - Soft Limit
CompType =3, Error Counter Comparator Value
CompType =4, General Comparator Value
CompType =5, Trigger Output Comparator Value

cmp_sts: status of comparator�
Bit Meaning
0 +Softlimit On
1 -SoftLimit On
2 Error counter comparator On
3 General comparator On
4 Trigger comparator On (for 0 , 1 axis only)

SelectSrc: The comparing data source
SelectSrc =0, disable auto compare
SelectSrc =1, use FIFO

Start: Start point of compare function
End: End point of compare function
Interval: Interval of compare function
TableArray: Array of comparing data
Size: Size of table array
Device : Selection of reload device for comparator data

Device =1, FIFO
Res_dist: The remain distance from the compare point. After comparison,

the original target position will be ignored, and the axis will keep
moving the Res_dist.

oldvel: The velocity at compare point. User must specify it manually.
newvel: The new velocity.
AccTime: The acceleration time.
Inp_enable: Latch source

Inp_enable =0, LTC Pin
Inp_enable =1, ORG Pin
Inp_enable =2, Counter4
Inp_enable =3, Counter5

166 • Function Library

@ Return Code

ERR_NoError
ERR_CompareNoError
ERR_CompareMethodError
ERR_CompareAxisError
ERR_CompareTableSizeError
ERR_CompareFunctionError
ERR_CompareTableNotReady
ERR_CompareLineNotReady
ERR_HardwareCompareAxisWrong
ERR_AutocompareSourceWrong
ERR_CompareDeviceTypeError

Function Library • 167

6.17 Continuous motion

@ Name
_7443_set_continuous_move – Enable continuous motion
_7443_check_continuous_buffer – check if the buffer is empty

@ Description
_7443_set_continuous_move():

This function is necessary to placed before and after continuous
motion.

_7443_check_continuous_buffer():
This function is used to detect if the command pre-register is empty
or not. Once the command pre-register is empty, user may write next
motion command into it. Otherwise , the new command will overwrite
previous in 2nd command pre-register.

@ Syntax

C/C++ (DOS, Windows 95/NT)
I16 _7443_set_continuous_move(I16 AxisNo, I16 conti_flag);
I16 _7443_check_continuous_buffer(I16 AxisNo);

Visual Basic (Windows 95/NT)
B_7443_set_continuous_move (ByVal AxisNo As Integer, ByVal conti_flag

As Integer) As Integer
B_7443_check_continuous_buffer (ByVal AxisNo As Integer) As Integer

@ Argument
AxisNo : axis number designated
conti_flag : Flag for continuous motion

conti_flag = 0, one-shoot motion, end of continuous motion
conti_flag = 1, continuous motion, start of continuous motion

@ Return Value

ERR_NoError

Return value of _7443_check_continuous_buffer():
Hardware version bit 12=0

0: Continuous register 2 is empty
1: Continuous register 2 is in-use

Return value of _7443_check_continuous_buffer():
Hardware version bit 12=1

0: all command registers are empty
1: command register is in-use
2: command register 1 is in-use
3: command register 2 is in-use

168 • Function Library

6.18 Multiple Axes Simultaneous Operation

@ Name
_7443_set_tr_move_all – Multi-axis simultaneous operation setup.
_7443_set_ta_move_all – Multi-axis simultaneous operation setup.
_7443_set_sr_move_all – Multi-axis simultaneous operation setup.
_7443_set_sa_move_all – Multi-axis simultaneous operation setup.
_7443_start_move_all – Begin a multi-axis trapezoidal profile motion
_7443_stop_move_all –Simultaneously stop Multi-axis motion
_7443_set_sync_option – Other sync. motion setting
_7443_set_sync_stop_mode – Setting the stop mode of CSTOP signal

@ Description
Theses functions are related simultaneous operation of multi-axis

even in different cards. The simultaneous multi-axis operation means
to start or stop moving specified axes at the same time. The move
axes are specified by parameter “AxisArray” and the number of
axes are defined by parameter “TotalAxes” in
_7443_set_tr_move_all() .

When properly setup with _7443_set_xx_move_all() , the function
_7443_start_move_all() will cause all specified axes to begin
trapezoidal relative moving, and _7443_stop_move_all() will stop
them. Both functions guarantee that motion Start/Stop on all
specified axes at the same time. Note that it is necessary to make
connections according to Section 3.14 on CN4 if these two functions
are needed.

The following code demos how to utilize these functions. This code
moves axis 0 and axis 4 to distance 8000.0 and 120000.0
respectively. If we choose velocities and accelerations that are
proportional to the ratio of distances, then the axes will arrive at their
endpoints at the same time (simultaneous motion).

int main()
{

I16 axes[2] = {0, 4};
F64 dist[2] = {8000.0, 12000.0},

str_vel[2]={0.0, 0.0},
max_vel[2]={4000.0, 6000.0},
Tacc[2]={0.04, 0.06},
Tdec[2]= {0.04, 0.06};

_7443_set_tr_move_all(2, axes, dist, str_vel, max_vel, Tacc, Tdec);
_7443_start_move_all(axes[0]);

return ERR_NoError;
}

Function Library • 169

_7443_set_sync_option()

It has many functions. It lets two or more different command groups start at
the same time. For example, if you want a 2-axis linear interpolation and a
1-axis single motion start at the same time, you can turn on this option
before command starts. This function also can be used on waiting another
command’s finish signal then start. For example, axis1 must start after axis2
is done.

_7443_set_sync_stop_mode()

It has two option for stop types: One is immediately stop and the other is
slow down to stop. When the _7443_stop_move_all() or CSTOP signal is
used, the axes will stop according to this setting.

@ Syntax

C/C++ (DOS, Windows 95/NT)
I16 _7443_set_tr_move_all(I16 TotalAxes, I16 *AxisArray, F64 *DistA, F64

*StrVelA, F64 *MaxVelA, F64 *TaccA, F64 *TdecA);
I16 _7443_set_sa_move_all(I16 TotalAx, I16 *AxisArray, F64 *PosA, F64

*StrVelA, F64 *MaxVelA, F64 *TaccA, F64 *TdecA, F64 *SVaccA,
F64 *SVdecA);

I16 _7443_set_ta_move_all(I16 TotalAx, I16 *AxisArray, F64 *PosA, F64
*StrVelA, F64 *MaxVelA, F64 *TaccA, F64 *TdecA);

I16 _7443_set_sr_move_all(I16 TotalAx, I16 *AxisArray, F64 *DistA, F64
*StrVelA, F64 *MaxVelA, F64 *TaccA, F64 *TdecA, F64 *SVaccA,
F64 *SVdecA);

I16 _7443_start_move_all(I16 FirstAxisNo);
I16 _7443_stop_move_all(I16 FirstAxisNo);
I16 _7443_set_sync_option(I16 AxisNo, I16 sync_stop_on, I16

cstop_output_on, I16 sync_option1, I16 sync_option2);
I16 _7443_set_sync_stop_mode(I16 AxisNo, I16 stop_mode);

Visual Basic (Windows 95/NT)
B_7443_set_tr_move_all(ByVal TotalAxes As Integer, AxisArray As Integer,

DistA As Double, StrVelA As double, MaxVelA As double, TaccA As
double, TdecA As double);

B_7443_set_sa_move_all(ByVal TotalAxes As Integer, AxisArray As
Integer, PosA As Double, StrVelA As double, MaxVelA As double,
TaccA As double, TdecA As double, SVaccA As double, SVdecA
As Double);

B_7443_set_ta_move_all(ByVal TotalAxes As Integer, AxisArray As Integer,
PosA As Double, StrVelA As double, MaxVelA As double, TaccA As
double, TdecA As double);

B_7443_set_sr_move_all(ByVal TotalAxes As Integer, AxisArray As Integer,
DistA As Double, StrVelA As double, MaxVelA As double, TaccA As
double, TdecA As double, SVaccA As double, SVdecA As Double);

B_7443_start_move_all(ByVal FirstAxisNo As Integer);
B_7443_stop_move_all(ByVal FirstAxisNo As Integer);
B_7443_set_sync_option (ByVal AxisNo As Integer, ByVal sync_stop_on

As Integer, ByVal cstop_output_on As Integer, ByVal sync_option1
As Integer, ByVal sync_option2 As Integer) As Integer

170 • Function Library

B_7443_set_sync_stop_mode (ByVal AxisNo As Integer, ByVal stop_mode
As Integer) As Integer

@ Argument
TotalAxes : number of axes for simultaneous motion, 1~48.
* AxisArray : specified axes number array designated to move.
* DistA : specified position array in unit of pulse
* StrVelA: starting velocity array in unit of pulse per second
* MaxVelA : maximum velocity array in unit of pulse per second
* TaccA: acceleration time array in unit of second
* TdecA: deceleration time array in unit of second
* SVaccA : specified velocity interval array in which S-curve acceleration is

performed.
* SVdecA : specified velocity interval array in which S-curve deceleration is

performed.
FirstAxisNo : the first element in AxisArray.
Sync_stop_on : Axis will stop if the CSTOP singal is on
Cstop_output_on : CSTOP singal will output when abnormal stop

(ALM,EL..etc)
Sync_option1 : Choose command start type

0: default (immediately start)
1: waiting _7443_start_move_all() or CSTA singal
2: Reserved
3: Check Sync_option2’s condition to start

Sync_option2 : for example
0: default (useless)
1: after Axis0 stops
2: after Axis1 stops
4: after Axis2 stops
8: after Axis3 stops
5: after Axis0 and Axis2 stop
15: Axis0~Axis3 stop

stop_mode : 0: immediately stop
1: slow down to stop

@ Return Code

ERR_NoError
ERR_SpeedError

Function Library • 171

6.19 General-purposed TTL output

@ Name
_7443_d_output – Digital Output
_7443_get_dio_status – Get DIO status

@ Description
_7443_d_output():

Set the on_off status for general-purposed TTL Digital output pin.
_7443_get_dio_status():

Read status of all digital output pin.

@ Syntax

C/C++ (DOS, Windows 95/NT)
I16 _7443_d_output(I16 CardNo, I16 Ch_No, I16 value);
I16 _7443_get_dio_status(I16 CardNo, U16 *dio_sts);

Visual Basic (Windows 95/NT)
B_7443_d_output (ByVal CardNo As Integer, ByVal Ch_No As Integer,

ByVal value As Integer) As Integer
B_7443_get_dio_status (ByVal CardNo As Integer, dio_sts As Integer) As

Integer

@ Argument
CardNo : Designated card number
Ch_No: Designated channel number 0~5
Value: On-Off Value for output

Value =0, output OFF
Value =1, output ON

dio_status: Digital output status
bit0~bit5 for channel 0~5 , respectively

@ Return Value

ERR_NoError
ERR_DioNoError

172 • Connection Example

7

Connection Example

This chapter shows some connection examples between PPCI7443 and
servo drivers and stepping drivers.

7.1 General Description of Wiring

CN1: Receives +24V power from external power supply.

CN2 :Main connection between PPCI7443 and pulse input servo driver or
stepping driver.

CN3: Receive pulse command from manual pulser.

CN4: Connector for simultaneously start or stop multiple PPCI7443 cards.

CN5: TTL digital output.

Figure 7.1 shows how to integrate PPCI7443 with a physical system.

Connection Example • 173

Figure 7.1 System Integration with PPCI7443

7.2 Connection Example with Servo Driver

In this section, we use Panasonic Servo Driver as an example to show
how to connect it with PPCI7443. Figure 7.2 show the wiring.

Note that:

1. For convenience’ sake , the drawing shows connections for one axis
only.

2. Default pulse output mode is OUT/DIR mode; default input mode is 1X
AB phase mode. Anyway, user can set to other mode by software
function.

3. Since most general purpose servomotor driver can operates in Torque
Mode; Velocity Mode; Position mode. For linking with PPCI7443,
user should set the operating mode to Position Mode.

174 • Connection Example

Figure 7.2 Connection of PPCI7443 with Panasonic Driver

Wiring of PPCI7443 with Panasonic MSD

3
4
5
6

98
99
7
8
9

10

13
14
15
16
17
18

20
37
38
39
40
41

OUT1 +
OUT1 -
DIR +
DIR -

EX GND
EX +24V
SVON 1
ERC 1
ALM 1
INP 1

EA1 +
EA1 -
EB1 +
EB1 -
EZ1 +
EZ1 -

EX GND
PEL1
MEL1
CMP1
SD1

ORG1

RDY 1
EX GND

11
12

EX +5V19

PPCI7443 Axis 1 Servo Driver

Panasonic
MSC CNI/F
(50-200 W)

Table

MEL ORG MSD PSD PEL

E

M

6
5
8
7

PULS +
PULS -
SIGN +
SIGN -

28
11
12

COM -
COM +

SRV-ON

26
25

ALM
COIN

27SRDY
3

19
GND
OA +

20OA -
21
22

OB +
OB -

1OZ +
2OZ -

13CL

Connection Example • 175

Figure 7.3 Connection of PPCI7443 with SANYO Driver

Wiring of PPCI7443 with SANYO AC Servo PY2

3
4
5
6
98
99

7
8
9
10

13
14
15
16
17
18

20
37
38
39
40
41

OUT1 +
OUT1 -
DIR +
DIR -

EX GND
EX +24V

SVON 1
ERC 1
ALM 1
INP 1

EA1 +
EA1 -
EB1 +
EB1 -
EZ1 +
EZ1 -

EX GND
PEL1
MEL1
CMP1
SD1

ORG1

RDY 1
EX GND

11
12

EX +5V19

PPCI7443 Axis 1 Servo Driver

SANYO
BL Super P

Series

Table

MEL ORG MSD PSD PEL

E

M

26
27
28
29

PPC
PPC
NPC
NPC

25
23

37

DC24V COM
DC24V

Servo ON

43
39

ALM1
General Out

32PROT

3Encoder A
4Encoder A
5
6

Encoder B
Encoder B

7Encoder C
8Encoder C

33NROT

CN1

EX +24V100 49DC24V

	PPCI7443 User's Guide
	Table of Contents
	How to Use This Guide
	1. Introduction
	1.1 Features
	1.2 Specifications
	1.3 Software Supporting
	1.3.1 Programming Library
	1.3.2 PPCI7443 Utility

	2. Installation
	2.1 What You Have
	2.2 PPCI7443 Outline Drawing
	2.3 Hardware Installation
	2.3.1 Hardware configuration
	2.3.2 PCI slot selection
	2.3.3 Installation Procedures
	2.3.4 Trouble shooting:

	2.4 Software Driver Installation
	2.5 CN1 Pin Assignments: External Power Input
	2.6 CN2 Pin Assignments: Main connector
	2.7 CN3 Pin Assignments: Manual Pulser Input
	2.8 CN4 Pin Assignments: Simultaneous Start/Stop
	2.9 CN5 Pin Assignment : TTL Output
	2.10 Jumper Setting for Pulse Output
	2.11 Switch Setting for EL Logic

	3. Signal Connections
	3.1 Pulse Output Signals OUT and DIR
	3.2 Encoder Feedback Signals EA, EB and EZ
	3.3 Origin Signal ORG
	3.4 End-Limit Signals PEL and MEL
	3.5 Ramping-down & PCS
	3.6 In-position Signal INP
	3.7 Alarm Signal ALM
	3.8 Deviation Counter Clear Signal ERC
	3.9 General-purpose Signal SVON
	3.10 General-purpose Signal RDY
	3.11 Position compare output pin: CMP
	3.12 Position latch input pin: LTC
	3.13 Pulser Input Signals PA and PB
	3.14 Simultaneously Start/Stop Signals STA and STP
	3.15 General-purposed TTL Output

	4. Operation Theorem
	4.1 Motion Control Modes
	4.1.1 Pulse Command Output
	4.1.2 Velocity mode motion
	4.1.3 Trapezoidal Motion Profile
	4.1.4 S-curve Motion Profile
	4.1.5 Linear interpolation for 2~4 axes
	4.1.6 Circular interpolation for 2 axes
	4.1.7 Circular interpolation with Acc/Dec time
	4.1.8 The Relationship between Velocity and Acceleration Time
	4.1.9 Continuous motion
	4.1.10 Home Return Mode
	home_mode = 0
	home_mode = 1
	home_mode = 2
	home_mode = 3
	home_mode = 4
	home_mode = 5
	home_mode = 6
	home_mode = 7
	home_mode = 8
	home_mode = 9
	home_mode = 10
	home_mode = 11
	home_mode = 12

	4.1.11 Manual Pulser Mode
	4.1.12 Timer Mode
	4.1.13 Pulser Interpolation

	4.2 The motor driver interface
	4.2.1 INP
	4.2.2 ALM
	4.2.3 ERC
	4.2.4 SVON and RDY

	4.3 The limit switch interface and I/O status
	4.3.1 SD/PCS
	4.3.2 EL
	4.3.3 ORG

	4.4 The Counters
	4.4.1 Command position counter
	4.4.2 Feedback position counter
	4.4.3 Position error counter
	4.4.4 General-Purposed counter
	4.4.5 Target position recorder

	4.5 Multiple PPCI7443 Cards Operation
	4.6 Change position or speed on the fly
	4.6.1 Change speed on the fly
	4.6.2 Change position on the fly

	4.7 Position compare and Latch
	4.7.1 Comparators of PPCI7443
	4.7.2 Position compare
	4.7.3 Position Latch

	4.8 Hardware backlash compensator and vibration suppression
	4.9 Software Limit Function
	4.10 Interrupt Control
	4.11 Idling control

	5. PPCI7443 Utility
	5.1 Execute PPCI7443 Utility
	5.2 About PPCI7443 Utility
	5.3 PPCI7443 Utility Form Introducing
	5.3.1 Main form
	5.3.2 Interface I/O Configuration Form
	5.3.3 Pulse IO & Interrupt Configuration Form
	5.3.4 Operate form

	6. Function Library
	6.1 List of Functions
	6.2 C/C++ Programming Library
	6.3 Initialization
	6.4 Pulse Input/Output Configuration
	6.5 Velocity mode motion
	6.6 Single Axis Position Mode
	6.7 Linear Interpolated Motion
	6.8 Circular Interpolation Motion
	6.9 Home Return Mode
	6.10 Manual Pulser Motion
	6.11 Motion Status
	6.12 Motion Interface I/O
	6.13 Motion I/O Monitoring
	6.14 Interrupt Control
	6.15 Position Control and Counters
	6.16 Position Compare and Latch
	6.17 Continuous motion
	6.18 Multiple Axes Simultaneous Operation
	6.19 General-purposed TTL output

	7. Connection Example
	7.1 General Description of Wiring
	7.2 Conection Example with Servo Driver

	End

